Cryptococcus spp. cause life-threatening fungal infection of the central nervous system (CNS), predominantly in patients with a compromised immune system. Why Cryptococcus neoformans has this remarkable tropism for the CNS is not clear. Recent research on cerebral pathogenesis of C. neoformans revealed a predominantly transcellular migration of cryptococci across the brain endothelium; however, the identities of key fungal virulence factors that function specifically to invade the CNS remain unresolved. Here we found that a novel, secreted metalloprotease (Mpr1) that we identified in the extracellular proteome of C. neoformans IMPORTANCE Cryptococcus neoformans is a medically relevant fungal pathogen causing significant morbidity and mortality, particularly in immunocompromised individuals. An intriguing feature is its strong neurotropism, and consequently the hallmark of cryptococcal disease is a brain infection, cryptococcal meningoencephalitis. For C. neoformans to penetrate the central nervous system (CNS), it first breaches the blood-brain barrier via a transcellular pathway; however, the identities of fungal factors required for this transmigration remain largely unknown. In an effort to identify extracellular fungal proteins that could mediate interactions with the brain endothelium, we undertook a proteomic analysis of the extracellular proteome and identified a secreted metalloprotease (Mpr1) belonging to the M36 class of fungalysins. Here we found that Mpr1 promotes migration of C. neoformans across the brain endothelium and into the CNS by facilitating attachment of cryptococci to the endothelium surface, thus underscoring the critical role of M36 proteases in fungal pathogenesis.
Cryptococcus neoformans cells must cross the blood-brain barrier prior to invading the central nervous system. Here we demonstrate that the immortalized human brain endothelial cell line HCMEC/D3 is a useful alternative to primary brain endothelial cells as a model of the blood-brain barrier for studies of central nervous system infection.Cryptococcus neoformans is a fungal human pathogen that causes meningitis in a predominantly immunocompromised population (26). To invade the central nervous system (CNS), cryptococcal cells must cross the blood-brain barrier (BBB) (2). Despite efforts to understand the propensity of this pathogen for the CNS, little progress has been made in the past couple of decades (9,(18)(19)(20). The major reasons for this have been the inability to recapitulate the properties of the BBB in vitro and the many challenges posed by BBB studies using live animals (13,21,22,24,32,35). Although commercially generated primary human brain microvascular endothelial cells (HBMEC) are now available for BBB studies, there are several disadvantages to developing models of the BBB using these cells. Mainly these primary cells are unstable after a limited number of passages, and they can be very expensive. The alternative, obtaining primary HBMEC from discarded brain tissues, is also undesirable since the process is labor-intensive and introduces variability from batch to batch (4,8). To facilitate the study of the BBB in vitro, researchers have tried to develop human brain endothelial cell lines that retain critical features of primary cells, such as the expression of endothelial cell markers, transporters, and tight junctional proteins (1,15,23,25,27,29,30,33,34,36). The recent development of one particular line of immortalized human brain endothelial cells (HCMEC/D3) that recapitulates many of the key characteristics of primary brain endothelial cells without the need to coculture with glial cells is proving to be a promising cell line for in vitro studies of the BBB (36). Indeed, the HCMEC/D3 cell line has already been successfully used as a BBB model in several studies, further attesting to its high quality and its potential to replace primary cells for in vitro BBB studies (10, 11, 12, 14-16, 28, 31, 37).Here we show that the HCMEC/D3 cell line can serve as a useful in vitro model of the BBB to study the mechanisms used by C. neoformans to breach the brain endothelium and enter the CNS. In order to test the feasibility of this cell line as a BBB model to study the migration of C. neoformans across the BBB, a transcytosis assay was used. This assay consisted of a transwell apparatus with endothelial cells growing in rich endothelial growth medium (EGM-2; Lonza) on a collagencoated porous membrane (8 m; Bioscience) (Fig. 1A) (4, 8). The HCMEC/D3 cells used here were between passages 25 and 35. HCMEC/D3 cells were seeded based on the growth area ratio. A confluent monolayer in a culture flask of 25 cm 2 was trypsinized and resuspended in 12 ml of medium. The ratio 12 ml/25 cm 2 (0.5 ml/1 cm 2 ) was ...
The response of plant cells t o invading pathogens is regulated by fluctuations in cytosolic Ca2+ levels that are mediated by Ca2+-permeable channels located at the plasma membrane of the host cell. The mechanisms by which fungal elicitors can induce Ca2+ uptake by the host cell were examined by the application of conventional patch-clamp techniques. Whole-cell and single-channel experiments on tomato (Lycopersicon esculentum L.) protoplasts revealed a race-specific fungal elicitor-induced activation of a plasma membrane Caz+-permeable channel. The presence of the fungal elicitor resulted in a greater probability of channel opening. Cuanosine 5'-[P-thioldiphosphate, a CDP analog that locks heterotrimeric C-proteins into their inactivated state, abolished the channel activation induced by the fungal elicitor, whereas guanosine 5'[y-thioltriphosphate, a nonhydrolyzable CTP analog that locks heterotrimeric C-proteins into their activated state, produced an effect similar t o that observed with the fungal elicitor. Mastoparan, which stimulates CTPase activity, mimicked the effect of CTP[ylS. The addition of HA1004 (a protein kinase inhibitor) in the presence of the elicitor totally abolished channel activity, whereas okadaic acid (a protein phosphatase inhibitor) moderately enhanced channel activity, suggesting that the activation of the channel by fungal elicitors is modulated by a heterotrimeric C-protein-dependent phosphorylation of the channel protein.
The ability of Cryptococcus neoformans to grow at the mammalian body temperature (37°C to 39°C) is a well-established virulence factor. Growth of C. neoformans at this physiological temperature requires calcineurin, a Ca 2؉ /calmodulin-dependent protein phosphatase. When cytosolic calcium concentrations are low (ϳ50 to 100 nM), calcineurin is inactive and becomes active only when cytosolic calcium concentrations rise (ϳ1 to 10 M) through the activation of calcium channels. In this study we analyzed the function of Cch1 in C. neoformans and found that Cch1 is a Ca 2؉ -permeable channel that mediates calcium entry in C. neoformans. Analysis of the Cch1 protein sequence revealed differences in the voltage sensor (S4 regions), suggesting that Cch1 may have diminished voltage sensitivity or possibly an alternative gating mechanism. The inability of the cch1 mutant to grow under conditions of limited extracellular calcium concentrations ([Ca 2؉ ] extracellular , ϳ100 nM) suggested that Cch1 was required for calcium uptake in low-calcium environments. These results are consistent with the role of ScCch1 in mediating high-affinity calcium uptake in Saccharomyces cerevisiae. Although the growth defect of the cch1 mutant under conditions of limited [Ca 2؉ ] extracellular (ϳ100 nM) became more severe with increasing temperature (25°C to 38.5°), this temperature sensitivity was not observed when the cch1 mutant was grown on rich medium ([Ca 2؉ ] extracellular , ϳ0.140 mM). Accordingly, the cch1 mutant strain displayed only attenuated virulence when tested in the mouse inhalation model of cryptococcosis, further suggesting that C. neoformans may have a limited requirement for Cch1 and that this requirement appears to include ion stress tolerance.
During primary simian immunodeficiency virus (SIV) infection, CD4+ T cells are severely depleted in gut-associated lymphoid tissue (GALT), while CD8+ T-cell numbers dramatically increase. To gain an understanding of the molecular basis of this disruption in T-cell homeostasis, host gene expression was monitored in longitudinal jejunum tissue biopsies from SIV-infected rhesus macaques by DNA microarray analysis. Transcription of cyclin E1, CDC2, retinoblastoma, transforming growth factor (TGF), fibroblast growth factor (FGF), and interleukin-2 was repressed while cyclins B1 and D2 and transcription factor E2F were upregulated, indicating a complex dysregulation of growth and proliferation within the intestinal mucosa. Innate, cell-mediated, and humoral immune responses were markedly upregulated in animals that significantly reduced their viral loads and retained more intestinal CD4+ T cells. We conclude that the alterations in intestinal gene expression during primary SIV infection were characteristic of a broad-range immune response, and reflective of the efficacy of viral suppression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.