Horizontal gene transfer events provide the basis for extensive dissemination of antimicrobial resistance traits between bacterial populations. Conjugation is considered to be the most frequent mechanism behind new resistance acquisitions in clinical pathogens but does not fully explain the resistance patterns seen in some bacterial genera. Gene transfer by natural transformation has been described for numerous clinical isolates, including some Acinetobacter species. The main aim of this study was to determine to what extent clinical, resistant Acinetobacter spp. isolates, express competence for natural transformation. Twenty-two clinical Acinetobacter spp. isolates collected over a 16-year time period, from five different geographical separated and/or distinct Portuguese Hospitals were tested for natural transformability. Fourteen isolates, including 11 A. baumannii, 2 A. nosocomialis and 1 Acinetobacter sp., were identified as competent on semisolid media facilitating surface-motility. Competent Acinetobacter isolates were found in all the hospitals tested. Furthermore, osmolarity was shown to influence the uptake of exogenous DNA by competent A. baumannii A118. Our study demonstrates that natural competence is common among clinical isolates of Acinetobacter spp., and hence likely an important trait for resistance acquisition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.