This study investigates the value of satellite-based observational algorithms in supporting numerical weather prediction (NWP) for improving the alert and monitoring of extreme rainfall events. To this aim, the analysis of the very intense precipitation that affected the city of Livorno on 9 and 10 September 2017 is performed by applying three remote sensing techniques based on satellite observations at infrared/visible and microwave frequencies and by using maps of accumulated rainfall from the weather research and forecasting (WRF) model. The satellite-based observational algorithms are the precipitation evolving technique (PET), the rain class evaluation from infrared and visible observations (RainCEIV) technique and the cloud classification mask coupling of statistical and physics methods (C-MACSP). Moreover, the rain rates estimated by the Italian Weather Radar Network are also considered to get a quantitative evaluation of RainCEIV and PET performance. The statistical assessment shows good skills for both the algorithms (for PET: bias = 1.03, POD = 0.76, FAR = 0.26; for RainCEIV: bias = 1.33, POD = 0.77, FAR = 0.41). In addition, a qualitative comparison among the three technique outputs, rain rate radar maps, and WRF accumulated rainfall maps is also carried out in order to highlight the advantages of the different techniques in providing real-time monitoring, as well as quantitative characterization of rainy areas, especially when rain rate measurements from Weather Radar Network and/or from rain gauges are not available.
Abstract:In this study, we compare different nowcasting techniques based upon the calculation of motion vector fields derived from spectral channels of Meteosat Second Generation-Spinning Enhanced Visible and InfraRed Imager (MSG-SEVIRI). The outputs of the nowcasting techniques are used as inputs to the Advanced Model for Estimation of Surface solar Irradiance from Satellite (AMESIS), for predicting surface solar irradiance up to 2 h in advance. In particular, the first part of the methodology consists in projecting the time evolution of each MSG-SEVIRI channel (for every pixel in the spatial domain) through extrapolation of a displacement vector field obtained by matching similar patterns within two successive MSG-SEVIRI data images. Different ways to implement the above method result in substantial differences in the predicted trajectory, leading to different performances depending on the time interval of interest. All the nowcasting techniques considered here systematically outperform the simple persistence method for all MSG-SEVIRI channels and for each case study used in this work; importantly, this occurs across the entire 2 h period of the forecast. In the second part of the algorithm, the predicted irradiance maps computed with AMESIS from the forecasted radiances, are shown to be in good agreement with irradiances derived from MSG measured radiances and improve on numerical weather model predictions, thus providing a feasible alternative for nowcasting surface solar radiation. The results show that the mean values for correlation, bias, and root mean square error vary across the time interval, ranging between 0.94, −1 W/m 2 , 61 W/m 2 after 15 min, and 0.73, −18 W/m 2 , 147 W/m 2 after 2 h, respectively.
In this study, the Meteosat Second Generation (MSG)-Spinning Enhanced Visible and Infrared Imager (SEVIRI) High Resolution Visible channel (HRV) is used in synergy with the narrow band MSG-SEVIRI channels for daytime fog detection. A new algorithm, named MSG-SEVIRI SatFog, has been designed and implemented. MSG-SEVIRI SatFog provides the indication of the presence of fog in near real time and at the high spatial resolution of the HRV channel. The HRV resolution is useful for detecting small scale daytime fog that would be missed in the MSG-SEVIRI low spatial resolution channels. By combining textural, physical and tonal tests, a distinction between fog and low stratus is performed for pixels identified as low/middle clouds or clear by the Classification-MAsk Coupling of Statistical and Physical Methods (C-MACSP) cloud detection algorithm. Suitable thresholds have been determined using a specific dataset covering different geographical areas, seasons and time of the day. MSG-SEVIRI SatFog is evaluated against METeorological Aerodrome Reports (METAR) data observations. Evaluation results in an accuracy of 69.9%, a probability of detection of 68.7%, a false alarm ratio of 31.3% and a probability of false detection of 30.0%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.