Antibodies are produced by the human body in response towards infections as a means of protection. The in vivo production of antibodies by B-cells involves a series of intricate gene editing processes resulting in a highly diverse pool of antibodies. However, this diversity can be replicated in vitro using phage display. Phage display offers the potential to present the antibody phenotype together with the cloned genotype of the specific antibody in a single-phage particle. Antibodies are highly sought after for diagnostic applications owing to its specificity and affinity towards a target antigen. The advent of recombinant antibody (rAb) technology allows for a faster and more costeffective solution for antibody generation. It also provides diagnostic developers with the possibility to customize the antibodies. Antibodies have been utilized successfully in various diagnostic platforms ranging from standard immunoassays to lateral-flow assays, nanoparticles, microfluidics, DNA-integrated assays and others. The limitless application of antibodies in the field of diagnostics has made it a critical component in any diagnostic development platform. This chapter focuses on the processes involved in antibody discovery including the various forms of antibody libraries for phage display and panning processes. We also highlight some diagnostic platforms that apply recombinant antibodies.
Pulmonary tuberculosis, caused by Mycobacterium tuberculosis, is one of the most persistent diseases leading to death in humans. As one of the key targets during the latent/dormant stage of M. tuberculosis, isocitrate lyase (ICL) has been a subject of interest for new tuberculosis therapeutics. In this work, the cleavage of the isocitrate by M. tuberculosis ICL was studied using quantum mechanics/molecular mechanics method at M06-2X/6-31+G(d,p): AMBER level of theory. The electronic embedding approach was applied to provide a better depiction of electrostatic interactions between MM and QM regions. Two possible pathways (pathway I that involves Asp108 and pathway II that involves Glu182) that could lead to the metabolism of isocitrate was studied in this study. The results suggested that the core residues involved in isocitrate catalytic cleavage mechanism are Asp108, Cys191 and Arg228. A water molecule bonded to Mg2+ acts as the catalytic base for the deprotonation of isocitrate C(2)–OH group, while Cys191 acts as the catalytic acid. Our observation suggests that the shuttle proton from isocitrate hydroxyl group C(2) atom is favourably transferred to Asp108 instead of Glu182 with a lower activation energy of 6.2 kcal/mol. Natural bond analysis also demonstrated that pathway I involving the transfer of proton to Asp108 has a higher intermolecular interaction and charge transfer that were associated with higher stabilization energy. The QM/MM transition state stepwise catalytic mechanism of ICL agrees with the in vitro enzymatic assay whereby Asp108Ala and Cys191Ser ICL mutants lost their isocitrate cleavage activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.