Current treatment for acute myeloid leukemia (AML) is less than optimal, but increased understanding of disease pathobiology and genomics has led to clinical investigation of novel targeted therapies and rational combinations. Targeting the cyclin-dependent kinase 9 (CDK9) pathway, which is dysregulated in AML, is an attractive approach. Inhibition of CDK9 leads to downregulation of cell survival genes regulated by super enhancers such as MCL-1, MYC, and cyclin D1. As CDK9 inhibitors are nonselective, predictive biomarkers that may help identify patients most likely to respond to CDK9 inhibitors are now being utilized, with the goal of improving efficacy and safety.Electronic supplementary materialThe online version of this article (10.1186/s13046-018-0704-8) contains supplementary material, which is available to authorized users.
Background
Deleterious polymorphisms in the gene encoding DPD (DPYD) may result in severe reduction of DPD enzymatic activity that causes life-threatening toxicities when the standard dose of fluorouracil is used. The best panel of single-nucleotide polymorphism (SNPs) of DPYD is not well defined.
Methods
In 2011, we began screening DPYD*2A in patients candidate for fluoropyrimidine-based chemotherapy. We planned a case-control study with all cases of DPYD*2A wild type who developed toxicity ≥G3 and with a cohort of patients who did not present severe toxicities. Then, we tested the additional SNPs: c.2846A>T, c.1679T>G, c.2194G>A.
Results
From 2011 to 2016, we screened 1827 patients for DPD deficiency; of those, 31 subjects (1.7%) showed DPYD*2A SNP. We selected 146 subjects who developed severe toxicities (Cases) and 220 patients who experienced no or mild toxicities (Controls); 53 patients carried one of the additional SNPs: 35 subjects (66%) fell into the Cases and 18 (34%) into the Controls (
p
< 0.0001). c.2194G>A was the most frequent SNP (12.5%) and showed a correlation with neutropenia. We confirmed that c.2846A>T and c.1679T>G were related to various toxicities.
Conclusions
The additional DPYD polymorphisms could enhance the prevention of fluoropyrimidine toxicity. c.2194G>A is the most frequent polymorphism and it was found to be associated with neutropenia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.