Lanthanide coordination polymers {[Ln(PTMTC)(EtOH)(2)H(2)O]·x H(2)O, y EtOH} [Ln=Tb (1), Gd (2), and Eu (3)] and {[Ln(αH-PTMTC)(EtOH)(2)H(2)O]·x H(2)O, y EtOH} [Ln=Tb (1'), Gd (2'), and Eu (3')] have been prepared by reacting Ln(III) ions with tricarboxylate-perchlorotriphenylmethyl/methane ligands that have a radical (PTMTC(3-)) or closed-shell (αH-PTMTC(3-)) character, respectively. X-ray diffraction analyses reveal 3D architectures that combine helical 1D channels and a fairly rare (6,3) connectivity described with the (4(2).8)·(4(4).6(2).8(5).10(4)) Schäfli symbol. Such 3D architectures make these polymers porous solids upon departure of the non-coordinated guest-solvent molecules as confirmed by the XRD structure of the guest-free [Tb(PTMTC)(EtOH)(2)H(2)O] and [Tb(αH-PTMTC)(EtOH)(2)H(2)O] materials. Accessible voids represent 40% of the cell volume. Metal-centered luminescence was observed in Tb(III) and Eu(III) coordination polymers 1' and 3', although the Ln(III)-ion luminescence was quenched when radical ligands were involved. The magnetic properties of all these compounds were investigated, and the nature of the {Ln-radical} (in 1 and 2) and the {radical-radical} exchange interactions (in 3) were assessed by comparing the behaviors for the radical-based coordination polymers 1-3 with those of the compounds with the diamagnetic ligand set. Whilst antiferromagnetic {radical-radical} interactions were found in 3, ferromagnetic {Ln-radical} interactions propagated in the 3D architectures of 1 and 2.
A series of isostructural open-framework coordination polymers formulated as [Ln(dmf)(3)(ptmtc)] (Ln = Sm (1), Eu (2), Gd (3), Tb (4), Dy (5); PTMTC = polychlorotriphenylmethyl tricarboxylate) and [Ln(dmf)(2)H(2)O(αH-ptmtc)] (Ln = Sm (1'), Eu (2'), Gd (3'), Tb (4'), Dy (5')) have been obtained by treating Ln(III) ions with PTMTC ligands with a radical (PTMTC(3-)) or a closed-shell character (αH-PTMTC(3-)). X-ray diffraction analyses reveal that these coordination polymers possess 3D architectures that combine large channels and fairly rare lattice complex T connectivity. In addition, these compounds show selective framework dynamic sorption properties. For both classes of ligands, the ability to act as an antenna in Ln sensitization processes has been investigated. No luminescence was observed for compounds 1-5, and 3' because of the PTMTC(3-) ligand and/or Gd(III) ion characteristics. Conversely, photoluminescence measurements show that 1', 2', 4', and 5' emit dark orange, red, green, and dark cyan metal-centered luminescence. The magnetic properties of all of these compounds have been investigated. The nature of the {Ln-radical} exchange interaction in these compounds has been assessed by comparing the behavior of the radical-based coordination polymers 1-5 with those of the compounds with the diamagnetic ligand set. While antiferromagnetic {Sm-radical} interactions are found in 1, ferromagnetic {Ln-radical} interactions propagate in the 3D architectures of 3, 4, and 5 (Ln = Gd, Tb, and Dy, respectively). This procedure also provided access to information on the {Ln-Ln} exchange existing in these magnetic systems.
Titanium dioxide (TiO2) and TiO2/Au/reduced graphene oxide nanocomposite thin films were grown by ultraviolet matrix assisted pulsed laser evaporation in controlled O2 or N2 atmospheres.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.