In this paper, the problem of clustering rotationally invariant shapes is studied and a solution using Information Geometry tools is provided. Landmarks of a complex shape are defined as probability densities in a statistical manifold. Then, in the setting of shapes clustering through a K-means algorithm, the discriminative power of two different shapes distances are evaluated. The first, derived from Fisher–Rao metric, is related with the minimization of information in the Fisher sense and the other is derived from the Wasserstein distance which measures the minimal transportation cost. A modification of the K-means algorithm is also proposed which allows the variances to vary not only among the landmarks but also among the clusters.
Shape Analysis studies geometrical objects, as for example a flat fish in the plane or a human head in the space. The applications range from structural biology, computer vision, medical imaging to archaeology. We focus on the selection of an appropriate measurement of distance among observations with the aim of obtaining an unsupervised classification of shapes. Data from a shape are often realized as a set of representative points, called landmarks. For planar shapes, we assume that each landmark is modeled via a bivariate Gaussian, where the means capture uncertainties that arise in landmarks placement and the variances the natural variability across the population of shapes. At first we consider the Fisher-Rao metric as a Riemannian metric on the Statistical Manifold of the Gaussian distributions. The induced geodesic-distance is related with the minimization of information in the Fisher sense and we can use it to discriminate shapes. Another suitable distance is the Wasserstein distance, which is induced by a Riemannian metric and is related with the minimal transportation cost. In this work, a simulation study is conducted in order to make a comparison between Wasserstein and Fisher-Rao metrics when used in shapes clustering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.