When resuscitated patients with STEMI are being evaluated in the emergency department, serious consideration should be given to emergent angiography and revascularization, regardless of neurologic status.
Venous compliance is lower in older adults compared with younger adults. It is possible that alterations in venous smooth muscle tone and responsiveness may contribute to the age-related differences in venous compliance. To determine the effects of sympathetic activation [cold pressor test (cold pressor test); rhythmic ischemic handgrip (rhythmic ischemic handgrip)] and endothelium-independent decreases in smooth muscle tone [sublingual nitroglycerin (nitroglycerin)] on venous compliance in young and older adults, forearm and calf venous compliance was measured in 12 young (22 +/- 1 yr) and 12 old (65 +/- 1 yr) supine subjects using venous occlusion plethysmography. Venous compliance was assessed at baseline, during the cold pressor test and rhythmic ischemic handgrip tests, and after nitroglycerin administration. All pressure-volume relationships were modeled with a quadratic regression equation, and beta1 and beta2 were used as indexes of venous compliance. A repeated-measures ANOVA was used to determine the effect of the age and trial on venous compliance. Calf regression parameters beta1 (0.0639 +/- 0.0126 vs. 0.0503 +/- 0.0059, young vs. older; P < 0.05) and beta2 (-0.00054 +/- 0.00011 vs. -0.00041 +/- 0.00005, young vs. older; P < 0.05) were significantly less in older adults at baseline. Similarly, forearm regression parameters, beta1 and beta2 were lower in older adults at baseline. Venous compliance was not effected by the cold pressor test test, rhythmic ischemic handgrip, or sublingual nitroglycerin in either group. Data suggest that forearm and calf venous compliance is lower in older adults compared with young. However, this difference probably cannot be explained by alterations in smooth muscle tone or responsiveness.
Hypertensive (HTN) animal models demonstrate lower venous compliance as well as increased venous tone and responsiveness compared with normotensive (NTN) controls. However, the extent to which findings in experimental animals can be extended to humans is unknown. Forearm and calf venous compliance were quantified in 9 NTN (23 +/- 1 yr) and 9 HTN (24 +/- 1 yr) men at baseline, after administration of nitroglycerin (NTG), during a cold pressor test (CP), and post-handgrip exercise ischemia (PEI). Individual pressure-volume relationships from a cuff deflation protocol (1 mmHg/s) were modeled with a quadratic regression. Regression parameters beta(1) and beta(2) were used to calculate compliance. A one-way ANOVA was used to compare the beta parameters and a repeated-measures ANOVA was used to compare volumes across all pressures (between groups at baseline and within groups during perturbations). Limb venous compliance was similar between groups (forearm: NTN beta(1) = 0.11 +/- 0.01 and beta(2) = -0.00097 +/- 0.0001, HTN beta(1) = 0.10 +/- 0.01 and beta(2) = -0.00088 +/- 0.0001; calf: NTN beta(1) = 0.12 +/- 0.01 and beta(2) = -0.00102 +/- 0.0001, HTN beta(1) = 0.11 +/- 0.01 and beta(2) = -0.00090 +/- 0.0001). However, at baseline, volume across all pressures (i.e., capacitance) was lower in the forearm (P < or = 0.01) and tended to be lower in the calf (P = 0.08) in HTN subjects. Venous compliance was not altered by any perturbation in either group. Forearm volume was increased during NTG in HTN subjects only. While venous compliance was similar between NTN and HTN adults, HTN adults have lower forearm venous capacitance (volume) which is increased with NTG. These data suggest that young HTN adults may have augmented venous smooth muscle tone compared with NTN controls.
Background
Our goal was to define the prevalence of radiation‐induced valvular heart (RIVD) disease among patients undergoing cardiac valve surgery in a community‐based, regional academic medical center. Mediastinal radiation is a treatment modality for various hematologic and solid malignancies; however, long‐term cardiac complications, including radiation‐induced valvular heart disease, can occur years after the radiation treatments.
Hypothesis
Mediastinal radiation exposure is an independent risk factor for valvular heart disease often necessitating valve replacement in patients without other risk factors for valve disease.
Methods
Between January 1, 1998 and September 1, 2007, we retrospectively analyzed our institution's cardiac surgical database over a 10 year period and identified 189 consecutive patients ≤ 50 years of age who underwent valve surgery. Using case‐control matching, we assessed the prevalence of mediastinal radiation among these young patients with valve disease necessitating surgery and to their matched controls from all patients admitted to the hospital.
Results
Nine individuals (4.8%) were identified as having received previous mediastinal radiation, significantly increased from controls (p<0.0001), and 8 of whom had surgical or pathologic findings consistent with radiation damage. Compared with a matched case‐control population, individuals who had severe valve disease and underwent valve replacement had a markedly increased prevalence of prior mediastinal radiation therapy.
Conclusions
In conclusion, cardiologists must remain aware of the potential long term valvular complications in patients treated with mediastinal radiation. Increased surveillance for RIVD may be considered in the decades following radiation therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.