Insect pheromones offer potential for managing pests of crop plants. Volatility and instability are problems for deployment in agriculture but could be solved by expressing genes for the biosynthesis of pheromones in the crop plants. This has now been achieved by genetically engineering a hexaploid variety of wheat to release (E)-β-farnesene (Eβf), the alarm pheromone for many pest aphids, using a synthetic gene based on a sequence from peppermint with a plastid targeting amino acid sequence, with or without a gene for biosynthesis of the precursor farnesyl diphosphate. Pure Eβf was produced in stably transformed wheat lines with no other detectable phenotype but requiring targeting of the gene produced to the plastid. In laboratory behavioural assays, three species of cereal aphids were repelled and foraging was increased for a parasitic natural enemy. Although these studies show considerable potential for aphid control, field trials employing the single and double constructs showed no reduction in aphids or increase in parasitism. Insect numbers were low and climatic conditions erratic suggesting the need for further trials or a closer imitation, in the plant, of alarm pheromone release.
BackgroundHigh amylose starch has attracted particular interest because of its correlation with the amount of Resistant Starch (RS) in food. RS plays a role similar to fibre with beneficial effects for human health, providing protection from several diseases such as colon cancer, diabetes, obesity, osteoporosis and cardiovascular diseases. Amylose content can be modified by a targeted manipulation of the starch biosynthetic pathway. In particular, the inactivation of the enzymes involved in amylopectin synthesis can lead to the increase of amylose content. In this work, genes encoding starch branching enzymes of class II (SBEIIa) were silenced using the RNA interference (RNAi) technique in two cultivars of durum wheat, using two different methods of transformation (biolistic and Agrobacterium). Expression of RNAi transcripts was targeted to the seed endosperm using a tissue-specific promoter.ResultsAmylose content was markedly increased in the durum wheat transgenic lines exhibiting SBEIIa gene silencing. Moreover the starch granules in these lines were deformed, possessing an irregular and deflated shape and being smaller than those present in the untransformed controls. Two novel granule bound proteins, identified by SDS-PAGE in SBEIIa RNAi lines, were investigated by mass spectrometry and shown to have strong homologies to the waxy proteins. RVA analysis showed new pasting properties associated with high amylose lines in comparison with untransformed controls. Finally, pleiotropic effects on other starch genes were found by semi-quantitative and Real-Time reverse transcription-polymerase chain reaction (RT-PCR).ConclusionWe have found that the silencing of SBEIIa genes in durum wheat causes obvious alterations in granule morphology and starch composition, leading to high amylose wheat. Results obtained with two different methods of transformation and in two durum wheat cultivars were comparable.
Cystinuria is a genetic disease that leads to frequent formation of stones. In patients with recurrent stone formation, particularly patients <30 years old or those who have siblings with stone disease, urologists should maintain a high index of suspicion of the diagnosis of cystinuria. Patients with cystinuria require frequent follow-up and a multidisciplinary approach to diagnosis, prevention and management. Patients have reported success in preventing stone episodes by maintaining dietary changes using a tailored review from a specialist dietician. For patients who do not respond to conservative lifestyle measures, medical therapy to alkalinize urine and thiol-binding drugs can help. A pre-emptive approach to the surgical management of cystine stones is recommended by treating smaller stones with minimally invasive techniques before they enlarge to a size that makes management difficult. However, a multimodal approach can be required for larger complex stones. Current cystinuria research is focused on methods of monitoring disease activity, novel drug therapies and genotype-phenotype studies. The future of research is collaboration at a national and international level, facilitated by groups such as the Rare Kidney Stone Consortium and the UK Registry of Rare Kidney Diseases.
Wheat and its derived foods are widespread, representing one of the main food sources globally. During the last decades, the incidence of disorders related to wheat has become a global issue for the human population, probably linked to the spread of wheat-derived foods. It has been ascertained that structural and metabolic proteins, like α-amylase/trypsin inhibitors (ATI), are involved in the onset of wheat allergies (bakers' asthma) and probably Non-Coeliac Wheat Sensitivity (NCWS). The ATI are a group of exogenous protease inhibitors, which are encoded by a multigene family dispersed over several chromosomes in durum and bread wheat. WTAI-CM3 and WTAI-CM16 subunits are considered among the main proteins involved in the onset of bakers' asthma and probably NCWS. A CRISPR-Cas9 multiplexing strategy was used to edit the ATI subunits WTAI-CM3 and WTAI-CM16 in the grain of the Italian durum wheat cultivar Svevo with the aim to produce wheat lines with reduced amount of potential allergens involved in adverse reactions. Using a marker gene-free approach, whereby plants are regenerated without selection agents, homozygous mutant plants without the presence of CRISPR vectors were obtained directly from T 0 generation. This study demonstrates the capability of CRISPR technology to knock out immunogenic proteins in a reduced time compared to conventional breeding programmes. The editing of the two target genes was confirmed either at molecular (sequencing and gene expression study) or biochemical (immunologic test) level. Noteworthy, as a pleiotropic effect, is the activation of the ATI 0.28 pseudogene in the edited lines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.