The molecular recognition of specific transfer RNAs by the appropriate aminoacyl-tRNA synthetase is an important step in determining the accuracy of translation of the genetic message from nucleic acids into proteins. Recent studies using variant tRNAs with specific sequence modifications have indicated particular regions that determine their identity. Here we consider whether the base modifications commonly found in tRNAs contribute to their identity. Although unmodified tRNA(Asp) is charged with aspartate as efficiently as the modified native tRNA, it is mischarged with arginine with considerably increased efficiency. Our results indicate that post-transcriptional modification of tRNAs introduces structural 'anti-determinants', restricting the efficiency with which the tRNAs are charged with inappropriate amino acids.
Chemical carcinogens such as the aromatic amide 2-acetylaminofluorene (AAF) are known to induce -1 frameshift mutation hotspots at repetitive sequences. This mutagenesis pathway was suggested to involve slipped intermediates formed during replication. To investigate the stability and structure of such intermediates we have constructed DNA duplexes containing single AAF adducts within a run of three guanine residues. The strand complementary to that bearing the AAF adducts contained either the wild-type sequence (homoduplexes) or lacked one cytosine directly opposite the run of guamnes containing the AAF adduct and thus modeled the putative slipped mutagenic intermediates (SMIs). The melting temperature of AAF-modified homoduplexes or the unmodified SMI was reduced by 410°C relative to the unmodified homoduplex. Surprisingly, AAF adducts stabilized the SMIs as evidenced by an increase in melting temperature to a level approaching that of the unmodified homoduplex. The chemical probes hydroxylamine and bromoacetaldehyde were strongly reactive toward cytosine residues opposite the adduct in AAFmodified homoduplexes, indicating adduct-induced denaturation. In contrast, no cytosine reactivities were observed in the AAF-modified SMIs, suggesting that the two cytosines were paired with unmodified guanines. Use ofdiethyl pyrocarbonate to probe the guanine residues showed that all three guanines in the unmodified SMI adopted a transient single-stranded state which was delocalized along the repetitive sequence. However, when an AAF adduct was present, reduced diethyl pyrocarbonate reactivity at guanines adjacent to the adduct in AAFmodified SMIs reflected localization of the bulge to the adducted base. Our results suggest that AAF exerts a local denaturing and destabilizing effect within the homoduplex which is alleviated by the formation of a bulge. The stabilization by the AAF adduct of the SMIs may contribute to the dramatic increase in -1 frameshift mutation frequency induced by AAF adducts in repetitive sequences.The aromatic amide 2-acetylaminofluorene (AAF) is a potent carcinogen that binds primarily to the C8 position of guanine to form N-(2'-deoxyguanosin-8-yl)-2-acetylaminofluorene adducts (1). Although damage distribution studies have shown that AAF binds approximately equally to all guanine residues (2), forward mutational spectra demonstrate that 90% of the mutations induced by AAF in Escherichia coli are -1 and -2 frameshifts which occur within contiguous sequences of guanine residues and within short alternating GC sequences such as the Nar I sites, respectively (3). The frequency of AAF-induced mutations at both types of mutational hotspot is enhanced by SOS induction, but only -1 frameshift mutagenesis requires the direct participation ofThe publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. §1734 solely to indicate this fact.RecA and UmuC/D proteins. Mutagenesis at alternating GC...
Yeast tRNA(Ser) is a member of the class II tRNAs, whose characteristic is the presence of an extended variable loop. This additional structural feature raises questions about the recognition of these class II tRNAs by their cognate synthetase and the possibility of the involvement of the extra arm in the recognition process. A footprinting study of yeast tRNA(Ser) complexed with its cognate synthetase, yeast seryl-tRNA synthetase (an alpha 2 dimer), was undertaken. Chemical (ethylnitrosourea) and enzymatic (nucleases S1 and V1) probes were used in the experiments. A map of the contact points between the tRNA and the synthetase was established and results were analyzed with respect to a three-dimensional model of yeast tRNA(Ser). Regions in close vicinity with the synthetase are clustered on one face of tRNA. The extra arm, which is strongly protected from chemical modifications, appears as an essential part of the contact area. The anticodon triplet and a large part of the anticodon arm are, in contrast, still accessible to the probes when the complex is formed. These results are discussed in the context of the recognition of tRNAs in the aminoacylation reaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.