Autism spectrum disorder (ASD) is characterized by atypical brain network organization, but findings have been inconsistent. While methodological and maturational factors have been considered, the network specificity of connectivity abnormalities remains incompletely understood. We investigated intrinsic functional connectivity (iFC) for four "core" functional networks-default-mode (DMN), salience (SN), and left (lECN) and right executive control (rECN). Resting-state functional MRI data from 75 children and adolescents (37 ASD, 38 typically developing [TD]) were included. Functional connectivity within and between networks was analyzed for regions of interest (ROIs) and whole brain, compared between groups, and correlated with behavioral scores. ROI analyses showed overconnectivity (ASD > TD), especially between DMN and ECN. Whole-brain results were mixed. While predominant overconnectivity was found for DMN (posterior cingulate seed) and rECN (right inferior parietal seed), predominant underconnectivity was found for SN (right anterior insula seed) and lECN (left inferior parietal seed). In the ASD group, reduced SN integrity was associated with sensory and sociocommunicative symptoms. In conclusion, atypical connectivity in ASD is network-specific, ranging from extensive overconnectivity (DMN, rECN) to extensive underconnectivity (SN, lECN). Links between iFC and behavior differed between groups. Core symptomatology in the ASD group was predominantly related to connectivity within the salience network.
Autism spectrum disorder (ASD) is characterized by core sociocommunicative impairments. Atypical intrinsic functional connectivity (iFC) has been reported in numerous studies of ASD. A majority of findings has indicated long-distance underconnectivity. However, fMRI studies have thus far exclusively examined static iFC across several minutes of scanning. We examined temporal variability of iFC, using sliding window analyses in selected high-quality (low-motion) consortium datasets from 76 ASD and 76 matched typically developing (TD) participants (Study 1) and in-house data from 32 ASD and 32 TD participants. Mean iFC and standard deviation of the sliding window correlation (SD-iFC) were computed for regions of interest (ROIs) from default mode and salience networks, as well as amygdala and thalamus. In both studies, ROI pairings with significant underconnectivity (ASD
Preliminary evidence suggests aberrant (mostly reduced) thalamocortical (TC) connectivity in autism spectrum disorder (ASD), but despite the crucial role of thalamus in sensorimotor functions and its extensive connectivity with cerebral cortex, relevant evidence remains limited. We performed a comprehensive investigation of region-specific TC connectivity in ASD. Resting-state functional MRI and diffusion tensor imaging (DTI) data were acquired for 60 children and adolescents with ASD (ages 7–17 years) and 45 age, sex, and IQ-matched typically developing (TD) participants. We examined intrinsic functional connectivity (iFC) and anatomical connectivity (probabilistic tractography) with thalamus, using 68 unilateral cerebral cortical regions of interest (ROIs). For frontal and parietal lobes, iFC was atypically reduced in the ASD group for supramodal association cortices, but was increased for cingulate gyri and motor cortex. Temporal iFC was characterized by overconnectivity for auditory cortices, but underconnectivity for amygdalae. Occipital iFC was broadly reduced in the ASD group. DTI indices (such as increased radial diffusion) for regions with group differences in iFC further indicated compromised anatomical connectivity, especially for frontal ROIs, in the ASD group. Our findings highlight the regional specificity of aberrant TC connectivity in ASD. Their overall pattern can be largely accounted for by functional overconnectivity with limbic and sensorimotor regions, but underconnectivity with supramodal association cortices. This could be related to comparatively early maturation of limbic and sensorimotor regions in the context of early overgrowth in ASD, at the expense of TC connectivity with later maturing cortical regions.
We compared cognitive abilities and brain measures between 16 middle-age men with high-functioning autism spectrum disorder (ASD) and 17 typical middle-age men to better understand how aging affects an older group of adults with ASD. Men with ASD made more errors on a test involving flexible thinking, had less activity in a flexible thinking brain network, and had smaller volume of a brain structure related to memory than typical men. We will follow these older adults over time to determine if aging changes are greater for individuals with ASD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.