This paper addresses the accelerated aging of medium-voltage (MV) cable terminations with resistive stress-grading due to supraharmonics. The paper introduces a simple and quick way to relate the risk of cable termination failure to the characteristics of supraharmonic distortion in the system. The motivation is to give practical recommendations and guidelines to evaluate the risk of failure of cable terminations under the presence of supraharmonics in MV networks. The underlying model relates the heating in the cable termination linearly with the frequency of the voltage applied and proportionally with the square of the magnitude of the voltage. The indicator can be used to decide whether given levels and frequencies of supraharmonics in the MV network represent a risk to cable terminations. The parameters of the cable termination design are not needed for that decision. However, the decision criterion is based on one sample data (Eagle Pass) and more field information is crucial to improve the approach. INDEX TERMS Dielectric breakdown, dielectric losses, power cable insulation, power quality, power system harmonics, supraharmonics.
Due to the increase in electronic loads such as LED lamps, power supply units for computing loads, voltage frequency drives in industries; high-frequency distortion is introduced into the power system. These high-frequency components appear due to the switching components of different power electronic converters present in the mentioned loads. The switching frequency components are most often in the range of 2 kHz to 150 kHz referred to as supraharmonics. The paper aims to show, with simulations and measurements, how supraharmonics sum in neutral and to quantify the neutral supraharmonic current as a ratio of single-phase current. This paper defines characteristics of supraharmonic emission that influence their summation in the neutral conductor through studies of devices connected in a balanced three-phase four-wire system. The paper further defines the relation of the supraharmonics emission with the number of devices connected at each phase. A mathematical model to predict the supraharmonics in a neutral conductor based on single-phase current and the number of devices further proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.