Impact of rationally selected additives in precursor solutions on the nucleation and growth of hybrid perovskite thin films is investigated.
Peroxiredoxins (Prxs or Prdxs) are a large protein superfamily of antioxidant enzymes that rapidly detoxify damaging peroxides and/or affect signal transduction and, thus, have roles in proliferation, differentiation, and apoptosis. Prx superfamily members are widespread across phylogeny and multiple methods have been developed to classify them. Here we present an updated atlas of the Prx superfamily identified using a novel method called MISST (Multi-level Iterative Sequence Searching Technique). MISST is an iterative search process developed to be both agglomerative, to add sequences containing similar functional site features, and divisive, to split groups when functional site features suggest distinct functionally-relevant clusters. Superfamily members need not be identified initially—MISST begins with a minimal representative set of known structures and searches GenBank iteratively. Further, the method’s novelty lies in the manner in which isofunctional groups are selected; rather than use a single or shifting threshold to identify clusters, the groups are deemed isofunctional when they pass a self-identification criterion, such that the group identifies itself and nothing else in a search of GenBank. The method was preliminarily validated on the Prxs, as the Prxs presented challenges of both agglomeration and division. For example, previous sequence analysis clustered the Prx functional families Prx1 and Prx6 into one group. Subsequent expert analysis clearly identified Prx6 as a distinct functionally relevant group. The MISST process distinguishes these two closely related, though functionally distinct, families. Through MISST search iterations, over 38,000 Prx sequences were identified, which the method divided into six isofunctional clusters, consistent with previous expert analysis. The results represent the most complete computational functional analysis of proteins comprising the Prx superfamily. The feasibility of this novel method is demonstrated by the Prx superfamily results, laying the foundation for potential functionally relevant clustering of the universe of protein sequences.
Protein function identification remains a significant problem. Solving this problem at the molecular functional level would allow mechanistic determinant identification—amino acids that distinguish details between functional families within a superfamily. Active site profiling was developed to identify mechanistic determinants. DASP and DASP2 were developed as tools to search sequence databases using active site profiling. Here, TuLIP (Two‐Level Iterative clustering Process) is introduced as an iterative, divisive clustering process that utilizes active site profiling to separate structurally characterized superfamily members into functionally relevant clusters. Underlying TuLIP is the observation that functionally relevant families (curated by Structure‐Function Linkage Database, SFLD) self‐identify in DASP2 searches; clusters containing multiple functional families do not. Each TuLIP iteration produces candidate clusters, each evaluated to determine if it self‐identifies using DASP2. If so, it is deemed a functionally relevant group. Divisive clustering continues until each structure is either a functionally relevant group member or a singlet. TuLIP is validated on enolase and glutathione transferase structures, superfamilies well‐curated by SFLD. Correlation is strong; small numbers of structures prevent statistically significant analysis. TuLIP‐identified enolase clusters are used in DASP2 GenBank searches to identify sequences sharing functional site features. Analysis shows a true positive rate of 96%, false negative rate of 4%, and maximum false positive rate of 4%. F‐measure and performance analysis on the enolase search results and comparison to GEMMA and SCI‐PHY demonstrate that TuLIP avoids the over‐division problem of these methods. Mechanistic determinants for enolase families are evaluated and shown to correlate well with literature results.
Using first-principles structure searching with density-functional theory (DFT), we identify a novel Fm 3̅ m phase of Cu 2 P and two low-lying metastable structures, an I 4̅3 d –Cu 3 P phase and a Cm –Cu 3 P 11 phase. The computed pair distribution function of the novel Cm –Cu 3 P 11 phase shows its structural similarity to the experimentally identified Cm –Cu 2 P 7 phase. The relative stability of all Cu–P phases at finite temperatures is determined by calculating the Gibbs free energy using vibrational effects from phonon modes at 0 K. From this, a finite-temperature convex hull is created, on which Fm 3̅ m –Cu 2 P is dynamically stable and the Cu 3– x P ( x < 1) defect phase Cmc 2 1 –Cu 8 P 3 remains metastable (within 20 meV/atom of the convex hull) across a temperature range from 0 to 600 K. Both CuP 2 and Cu 3 P exhibit theoretical gravimetric capacities higher than contemporary graphite anodes for Li-ion batteries; the predicted Cu 2 P phase has a theoretical gravimetric capacity of 508 mAh/g as a Li-ion battery electrode, greater than both Cu 3 P (363 mAh/g) and graphite (372 mAh/g). Cu 2 P is also predicted to be both nonmagnetic and metallic, which should promote efficient electron transfer in the anode. Cu 2 P’s favorable properties as a metallic, high-capacity material suggest its use as a future conversion anode for Li-ion batteries; with a volume expansion of 99% during complete cycling, Cu 2 P anodes could be more durable than other conversion anodes in the Cu–P system, with volume expansions greater than 150%. The structures and figures presented in this paper, and the code used to generate them, can be interactively explored online using .
BackgroundDevelopment of automatable processes for clustering proteins into functionally relevant groups is a critical hurdle as an increasing number of sequences are deposited into databases. Experimental function determination is exceptionally time-consuming and can’t keep pace with the identification of protein sequences. A tool, DASP (Deacon Active Site Profiler), was previously developed to identify protein sequences with active site similarity to a query set. Development of two iterative, automatable methods for clustering proteins into functionally relevant groups exposed algorithmic limitations to DASP.ResultsThe accuracy and efficiency of DASP was significantly improved through six algorithmic enhancements implemented in two stages: DASP2 and DASP3. Validation demonstrated DASP3 provides greater score separation between true positives and false positives than earlier versions. In addition, DASP3 shows similar performance to previous versions in clustering protein structures into isofunctional groups (validated against manual curation), but DASP3 gathers and clusters protein sequences into isofunctional groups more efficiently than DASP and DASP2.ConclusionsDASP algorithmic enhancements resulted in improved efficiency and accuracy of identifying proteins that contain active site features similar to those of the query set. These enhancements provide incremental improvement in structure database searches and initial sequence database searches; however, the enhancements show significant improvement in iterative sequence searches, suggesting DASP3 is an appropriate tool for the iterative processes required for clustering proteins into isofunctional groups.Electronic supplementary materialThe online version of this article (doi:10.1186/s12859-016-1295-z) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.