Abstract-There is an emerging trend towards soft robotics due to its extended manipulation capabilities compared to traditionally rigid robot links, showing promise for an extended applicability to new areas. However, as a result of the inherent property of soft robotics being less rigid, the ability to control/obtain higher overall stiffness when required is yet to be further explored. In this paper, an innovative design is introduced which allows varying the stiffness of a continuum silicon-based manipulator and proves to have potential for applications in Minimally Invasive Surgery. Inspired by muscular structures occurring in animals such as the octopus, we propose a hybrid and inherently antagonstic actuation scheme. In particular, the octopus makes use of this principle activating two sets of muscles -longitudinal and transverse musclesthus, being capable of controlling the stiffness of parts of its arm in an antagonistic fashion. Our designed manipulator is pneumatically actuated employing chambers embedded within the robot's silicone structure. Tendons incorporated in the structure complement the pneumatic actuation placed inside the manipulator's wall to allow variation of overall stiffness. Experiments are carried out by applying an external force in different configurations while changing the stiffness by means of the two actuation mechanisms. Our test results show that dual, antagonistic actuation increases the load bearing capabilities for soft continuum manipulators and thus their range of applications.
Robotic manipulators for Robot-assisted Minimally Invasive Surgery (RMIS) pass through small incisions into the patient's body and interact with soft internal organs. The performance of traditional robotic manipulators such as the da Vinci Robotic System is limited due to insufficient flexibility of the manipulator and lack of haptic feedback. Modern surgical manipulators have taken inspiration from biology e.g. snakes or the octopus. In order for such soft and flexible arms to reconfigure itself and to control its pose with respect to organs as well as to provide haptic feedback to the surgeon, tactile sensors can be integrated with the robot's flexible structure. The work presented here takes inspiration from another area of biology: cucumber tendrils have shown to be ideal tactile sensors for the plant that they are associated with providing useful environmental information during the plant's growth. Incorporating the sensing principles of cucumber tendrils, we have created miniature sensing elements that can be distributed across the surface of soft manipulators to form a sensor network capable of acquire tactile information. Each sensing element is a retractable hemispherical tactile measuring applied pressure. The actual sensing principle chosen for each tactile makes use of optic fibres that transfer light signals modulated by the applied pressure from the sensing element to the proximal end of the robot arm. In this paper, we describe the design and structure of the sensor system, the results of an analysis using Finite Element Modeling in ABAQUS as well as sensor calibration and experimental results. Due to the simple structure of the proposed tactile sensor element, it is miniaturisable and suitable for MIS. An important contribution of this work is that the developed sensor system can be "loosely" integrated with a soft arm effectively operating independently of the arm and without affecting the arm's motion during bending or elongation.
Flexible soft and stiffness-controllable surgical manipulators enhance the manoeuvrability of surgical tools during Minimally Invasive Surgery (MIS), as opposed to conventional rigid laparoscopic instruments. These flexible and soft robotic systems allow bending around organs, navigating through complex anatomical pathways inside the human body and interacting inherently safe with its soft environment. Shape sensing in such systems is a challenge and one essential requirement for precise position feedback control of soft robots. This paper builds on our previous work integrating multiple optical fibres into a soft manipulator to estimate the robot's pose using light intensity modulation. Here, we present an enhanced version of our embedded bending/shape sensor based on electro-conductive yarn. The new system is miniaturised and able to measure bending behaviour as well as elongation. The integrated yarn material is helically wrapped around an elastic strap and protected inside a 1.5mm outer-diameter stretchable pipe. Three of these resulting stretch sensors are integrated in the periphery of a pneumatically actuated soft manipulator for direct measurement of the actuation chamber lengths. The capability of the sensing system in measuring the bending curvature and elongation of the arm is evaluated.
Abstract-This paper introduces an optical based three axis force sensor which can be integrated with the robot arm of the EU project STIFF-FLOP (STIFFness controllable Flexible and Learnable Manipulator for Surgical Operations) in order to measure applied external forces. The structure of the STIFF-FLOP arm is free of metal components and electric circuits and, hence, is inherently safe near patients during surgical operations. In addition, this feature makes the performance of this sensing system immune against strong magnetic fields inside magnetic resonance (MR) imaging scanners. The hollow structure of the sensor allows the implementation of distributed actuation and sensing along the body of the manipulator. In this paper, we describe the design and calibration procedure of the proposed three axis optics-based force sensor. The experimental results confirm the effectiveness of our optical sensing approach and its applicability to determine the force and momentum components during the physical interaction of the robot arm with its environment. I. INTRODUCTIONUsing Robot Technology, minimally invasive surgery (MIS) has considerably advanced over the last few decades. Recently, robotic surgical devices such as da Vinci surgery system take advantages of cutting edge robot technology leading to tremendous advancement in stable and safe MIS. Such surgical devices enable doctors to perform surgical operation precisely making use of the feedback from vision systems -3D surgical cameras are employed enhancing the doctors' performance during complex surgery in confined spaces. Employing these stable, tremor-free and intuitive surgical systems, operations are tremendously simplified when compared to standard laparoscopy [1-2].However, due to their rigid structure and the low degrees of freedom, such medical devices require a large motion workspace to perform surgical operations. These devices have limited ability to pass and maneuver inside small openings and confined spaces. Moreover, they do not use tactile and force Tommaso Ranzani is with Scuola Superiore Sant'Anna, The BioRobotics Institute, Italy sensors, and therefore are not able to protect delicate internal organs. As a result, these robotic systems can cause patients to be in a critical condition during or after the operation.In order to overcome the shortcomings of the conventional, rigid medical devices, researchers have started to develop flexible manipulators. Taylor et al. developed a flexible snake-like manipulator that can demonstrate high degrees of actuation dexterity in confined spaces [3][4]. However this device is not capable of changing its stiffness. Simaan et al. also proposed a dexterous, flexible manipulator, which can articulate into complex shapes [5][6]. Active cannulas manipulators by Webster et al. are a new class of thin, dexterous continuum robots that can access narrow openings such as the throat and lung [7][8]. Cheng et al. developed a flexible manipulator, which can change its stiffness and is capable of dexterous precise motion c...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.