BackgroundA dramatic rise in health-tracking apps for mobile phones has occurred recently. Rich user interfaces make manual logging of users’ behaviors easier and more pleasant, and sensors make tracking effortless. To date, however, feedback technologies have been limited to providing overall statistics, attractive visualization of tracked data, or simple tailoring based on age, gender, and overall calorie or activity information. There are a lack of systems that can perform automated translation of behavioral data into specific actionable suggestions that promote healthier lifestyle without any human involvement.ObjectiveMyBehavior, a mobile phone app, was designed to process tracked physical activity and eating behavior data in order to provide personalized, actionable, low-effort suggestions that are contextualized to the user’s environment and previous behavior. This study investigated the technical feasibility of implementing an automated feedback system, the impact of the suggestions on user physical activity and eating behavior, and user perceptions of the automatically generated suggestions.MethodsMyBehavior was designed to (1) use a combination of automatic and manual logging to track physical activity (eg, walking, running, gym), user location, and food, (2) automatically analyze activity and food logs to identify frequent and nonfrequent behaviors, and (3) use a standard machine-learning, decision-making algorithm, called multi-armed bandit (MAB), to generate personalized suggestions that ask users to either continue, avoid, or make small changes to existing behaviors to help users reach behavioral goals. We enrolled 17 participants, all motivated to self-monitor and improve their fitness, in a pilot study of MyBehavior. In a randomized two-group trial, investigators randomly assigned participants to receive either MyBehavior’s personalized suggestions (n=9) or nonpersonalized suggestions (n=8), created by professionals, from a mobile phone app over 3 weeks. Daily activity level and dietary intake was monitored from logged data. At the end of the study, an in-person survey was conducted that asked users to subjectively rate their intention to follow MyBehavior suggestions.ResultsIn qualitative daily diary, interview, and survey data, users reported MyBehavior suggestions to be highly actionable and stated that they intended to follow the suggestions. MyBehavior users walked significantly more than the control group over the 3 weeks of the study (P=.05). Although some MyBehavior users chose lower-calorie foods, the between-group difference was not significant (P=.15). In a poststudy survey, users rated MyBehavior’s personalized suggestions more positively than the nonpersonalized, generic suggestions created by professionals (P<.001).ConclusionsMyBehavior is a simple-to-use mobile phone app with preliminary evidence of efficacy. To the best of our knowledge, MyBehavior represents the first attempt to create personalized, contextualized, actionable suggestions automatically from self-tracked information...
Objectives To determine the effects on weight loss of three abbreviated behavioral weight loss interventions with and without coaching and mobile technology. Methods Randomized controlled efficacy study of three six-month weight loss treatments delivered to 96 adults with obesity: 1) self-guided [SELF], 2) standard [STND], or 3) technology-supported [TECH]. STND and TECH received 8 in-person group treatment sessions. SELF and STND used paper diaries to self-monitor diet, activity, and weight; TECH used a smartphone application with social networking features and wireless accelerometer. Results Weight loss was greater for TECH and STND than SELF at 6 months [−5.7kg (95% CI: −7.2, −4.1) vs. −2.7kg (95% CI: −5.1, −0.3), p<.05]), but not 12 months. TECH and STND did not differ except that more STND (59%) than TECH (34%) achieved ≥5% weight loss at 6 months (P < 0.05). Self-monitoring adherence was greater in TECH than STND (P <0.001), greater in both interventions than SELF (P <0.001), and covaried with weight loss (r(84) = 0.36 − 0.51, P<.001). Conclusions Abbreviated behavioral counseling can produce clinically meaningful weight loss regardless of whether self-monitoring is performed on paper or smartphone, but long-term superiority over standard of care self-guided treatment is challenging to maintain.
BackgroundPrevalent co-occurring poor diet and physical inactivity convey chronic disease risk to the population. Large magnitude behavior change can improve behaviors to recommended levels, but multiple behavior change interventions produce small, poorly maintained effects.ObjectiveThe Make Better Choices 2 trial tested whether a multicomponent intervention integrating mHealth, modest incentives, and remote coaching could sustainably improve diet and activity.MethodsBetween 2012 and 2014, the 9-month randomized controlled trial enrolled 212 Chicago area adults with low fruit and vegetable and high saturated fat intakes, low moderate to vigorous physical activity (MVPA) and high sedentary leisure screen time. Participants were recruited by advertisements to an open-access website, screened, and randomly assigned to either of two active interventions targeting MVPA simultaneously with, or sequentially after other diet and activity targets (N=84 per intervention) or a stress and sleep contact control intervention (N=44). They used a smartphone app and accelerometer to track targeted behaviors and received personalized remote coaching from trained paraprofessionals. Perfect behavioral adherence was rewarded with an incentive of US $5 per week for 12 weeks. Diet and activity behaviors were measured at baseline, 3, 6, and 9 months; primary outcome was 9-month diet and activity composite improvement.ResultsBoth simultaneous and sequential interventions produced large, sustained improvements exceeding control (P<.001), and brought all diet and activity behaviors to guideline levels. At 9 months, the interventions increased fruits and vegetables by 6.5 servings per day (95% CI 6.1-6.8), increased MVPA by 24.7 minutes per day (95% CI 20.0-29.5), decreased sedentary leisure by 170.5 minutes per day (95% CI –183.5 to –157.5), and decreased saturated fat intake by 3.6% (95% CI –4.1 to –3.1). Retention through 9-month follow-up was 82.1%. Self-monitoring decreased from 96.3% of days at baseline to 72.3% at 3 months, 63.5% at 6 months, and 54.6% at 9 months (P<.001). Neither attrition nor decline in self-monitoring differed across intervention groups.ConclusionsMulticomponent mHealth diet and activity intervention involving connected coaching and modest initial performance incentives holds potential to reduce chronic disease risk.Trial RegistrationClinicalTrials.gov NCT01249989; https://clinicaltrials.gov/ct2/show/NCT01249989 (Archived by WebCite at https://clinicaltrials.gov/ct2/show/NCT01249989).
BackgroundIn low/middle income countries like India, diabetes is prevalent and health care access limited. Most adults have a mobile phone, creating potential for mHealth interventions to improve public health. To examine the feasibility and initial evidence of effectiveness of mDiabetes, a text messaging program to improve diabetes risk behaviors, a global nonprofit organization (Arogya World) implemented mDiabetes among one million Indian adults.ObjectiveA prospective, parallel cohort design was applied to examine whether mDiabetes improved fruit, vegetable, and fat intakes and exercise.MethodsIntervention participants were randomly selected from the one million Nokia subscribers who elected to opt in to mDiabetes. Control group participants were randomly selected from non-Nokia mobile phone subscribers. mDiabetes participants received 56 text messages in their choice of 12 languages over 6 months; control participants received no contact. Messages were designed to motivate improvement in diabetes risk behaviors and increase awareness about the causes and complications of diabetes. Participant health behaviors (exercise and fruit, vegetable, and fat intake) were assessed between 2012 and 2013 via telephone surveys by blinded assessors at baseline and 6 months later. Data were cleaned and analyzed in 2014 and 2015.Results982 participants in the intervention group and 943 in the control group consented to take the phone survey at baselne. At the end of the 6-month period, 611 (62.22%) in the intervention and 632 (67.02%) in the control group completed the follow-up telephone survey. Participants receiving texts demonstrated greater improvement in a health behavior composite score over 6 months, compared with those who received no messages F(1, 1238) = 30.181, P<.001, 95% CI, 0.251-0.531. Fewer intervention participants demonstrated health behavior decline compared with controls. Improved fruit, vegetable, and fat consumption (P<.01) but not exercise were observed in those receiving messages, as compared with controls.ConclusionsA text messaging intervention was feasible and showed initial evidence of effectiveness in improving diabetes-related health behaviors, demonstrating the potential to facilitate population-level behavior change in a low/middle income country.Trial RegistrationAustralian New Zealand Clinical Trials Registry (ACTRN): 12615000423516; https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=367946&isReview=true (Archived by WebCite at http://www.webcitation.org/6j5ptaJgF)
Lower cost alternatives are needed for the traditional in-person behavioral weight loss programs to overcome challenges of lowering the worldwide prevalence of overweight and obesity. Smartphones have become ubiquitous and provide a unique platform to aid in the delivery of a behavioral weight loss program. The technological capabilities of a smartphone may address certain limitations of a traditional weight loss program, while also reducing the cost and burden on participants, interventionists, and health care providers. Awareness of the advantages smartphones offer for weight loss has led to the rapid development and proliferation of weight loss applications (apps). The built-in features and the mechanisms by which they work vary across apps. Although there are an extraordinary number of a weight loss apps available, most lack the same magnitude of evidence-based behavior change strategies typically used in traditional programs. As features develop and new capabilities are identified, we propose a conceptual model as a framework to guide the inclusion of features that can facilitate behavior change and lead to reductions in weight. Whereas the conventional wisdom about behavior change asserts that more is better (with respect to the number of behavior change techniques involved), this model suggests that less may be more because extra techniques may add burden and adversely impact engagement. Current evidence is promising and continues to emerge on the potential of smartphone use within weight loss programs; yet research is unable to keep up with the rapidly improving smartphone technology. Future studies are needed to refine the conceptual model’s utility in the use of technology for weight loss, determine the effectiveness of intervention components utilizing smartphone technology, and identify novel and faster ways to evaluate the ever-changing technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.