BackgroundAcute respiratory infection (ARI) is a leading cause of morbidity and mortality in children worldwide. This study aimed to determine the viral and atypical bacterial causes of different severities and clinical manifestations of ARI in preschool children from low-income families in North-East Brazil.MethodsClinical/demographic data and nasopharyngeal aspirates (NPA) were prospectively collected from children <5 years presenting with ARI over one year to a paediatric A&E department. Disease severity was grouped according to presence of lower respiratory tract signs, need for hospital admission and need for oxygen. Clinical manifestation of ARI was based on discharge diagnosis from hospital with four conditions predominating: bronchiolitis, pneumonia, episodic viral wheeze/asthma and upper respiratory tract infection. Multiplex PCR was used to detect 17 common respiratory viral and atypical bacterial pathogens in NPA.Findings407 children with a median age of eight months were recruited. Pathogens were detected in 85·5% samples with co-infection being particularly common (39·5%). Respiratory Syncytial Virus (RSV; 37%), Adenoviruses (AdV; 25%), Rhinoviruses (hRV; 19%), Bocavirus (hBoV; 19%), human Meta-pneumovirus (hMPV; 10%) and Mycoplasma pneumoniae (Mpp; 10%) were most prevalent. Detection and co-infection rates were similar in all severities and clinical manifestations of ARI apart from RSV, which was associated with more severe disease and specifically more severe cases of bronchiolitis, and Mpp, which was associated with more severe cases of pneumonia. Mpp was detected in 17% of children admitted to hospital with pneumonia.InterpretationThis study underlines the importance of viral and atypical bacterial pathogens in ARI in pre-school children and highlights the complex epidemiology of these pathogens in this age group. Generally, viruses and atypical bacteria were detected in all severities and clinical manifestations of ARI but RSV and Mpp were associated with more severe cases of bronchiolitis and pneumonia respectively.
Background. Neutrophils are the predominant cell in the lung inflammatory infiltrate of infants with respiratory syncytial virus (RSV) bronchiolitis. Although it has previously been shown that neutrophils from both blood and bronchoalveolar lavage (BAL) are activated, little is understood about their role in response to RSV infection. This study investigated whether RSV proteins and mRNA are present in neutrophils from blood and BAL of infected infants.Methods. We obtained blood and BAL samples from 20 infants with severe RSV bronchiolitis and 8 healthy control infants. Neutrophil RSV F, G, and N proteins, RSV N genomic RNA, and messenger RNA (mRNA) were quantified.Results. RSV proteins were found in BAL and blood neutrophils in infants with RSV disease but not in neutrophils from healthy infants. BAL and blood neutrophils from infants with RSV disease, but not those from healthy infants, expressed RSV N genomic RNA, indicating uptake of whole virus; 17 of 20 BAL and 8 of 9 blood neutrophils from patients expressed RSV N mRNA.Conclusions. This work shows, for the first time, the presence of RSV proteins and mRNA transcripts within BAL and blood neutrophils from infants with severe RSV bronchiolitis.
BackgroundThe mechanisms regulating antibody expression within the human lung during airway infection are largely unknown. In this study, our objectives were to determine if infection with respiratory syncytial virus (RSV) upregulates expression of the B cell differentiation factors A proliferation inducing ligand (APRIL) and B cell activating factor of the TNF family (BAFF), if this is a common feature of viral airway infection, and how this is regulated in human airway epithelial cells. Methods We measured BAFF and APRIL protein expression in bronchoalveolar lavage (BAL) fluid from infants with severe RSV disease, and healthy control children, and in nasopharyngeal aspirates from preschool children with other single respiratory viral infections. We also measured mRNA expression in bronchial brushings from RSV-infected infants, and in RSV-infected paediatric primary airway epithelial cell cultures ( pAEC). Beas-2B cell cultures were used to examine mechanisms regulating BAFF expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.