The constrained consensus problem considered in this paper, denoted interval consensus, is characterized by the fact that each agent can impose a lower and upper bound on the achievable consensus value. Such constraints can be encoded in the consensus dynamics by saturating the values that an agent transmits to its neighboring nodes. We show in the paper that when the intersection of the intervals imposed by the agents is nonempty, the resulting constrained consensus problem must converge to a common value inside that intersection. In our algorithm, convergence happens in a fully distributed manner, and without need of sharing any information on the individual constraining intervals. When the intersection of the intervals is an empty set, the intrinsic nonlinearity of the network dynamics raises new challenges in understanding the node state evolution. Using Brouwer fixed-point theorem we prove that in that case there exists at least one equilibrium, and in fact the possible equilibria are locally stable if the constraints are satisfied or dissatisfied at the same time among all nodes. For graphs with sufficient sparsity it is further proven that there is a unique equilibrium that is globally attractive if the constraint intervals are pairwise disjoint.
In parliamentary democracies, government negotiations talks following a general election can sometimes be a long and laborious process. In order to explain this phenomenon, in this paper we use structural balance theory to represent a multiparty parliament as a signed network, with edge signs representing alliances and rivalries among parties. We show that the notion of frustration, which quantifies the amount of “disorder” encoded in the signed graph, correlates very well with the duration of the government negotiation talks. For the 29 European countries considered in this study, the average correlation between frustration and government negotiation talks ranges between 0.42 and 0.69, depending on what information is included in the edges of the signed network. Dynamical models of collective decision-making over signed networks with varying frustration are proposed to explain this correlation.
The models of collective decision-making considered in this paper are nonlinear interconnected cooperative systems with saturating interactions. These systems encode the possible outcomes of a decision process into different steady states of the dynamics. In particular, they are characterized by two main attractors in the positive and negative orthant, representing two choices of agreement among the agents, associated to the Perron-Frobenius eigenvector of the system. In this paper we give conditions for the appearance of other equilibria of mixed sign. The conditions are inspired by Perron-Frobenius theory and are related to the algebraic connectivity of the network. We also show how all these equilibria must be contained in a solid disk of radius given by the norm of the equilibrium point which is located in the positive orthant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.