Interleukin-1 receptor-associated kinases (IRAK1, IRAK2, IRAK3 [IRAK-M], and IRAK4) are serine-threonine kinases involved in toll-like receptor and interleukin-1 signaling pathways, through which they regulate innate immunity and inflammation. Evidence exists that IRAKs play key roles in the pathophysiologies of cancers, and metabolic and inflammatory diseases, and that IRAK inhibition has potential therapeutic benefits. Molecules capable of selectively interfering with IRAK function and expression have been reported, paving the way for the clinical evaluation of IRAK inhibition. Herein, we focus on IRAK1, review its structure and physiological roles, and summarize emerging data for IRAK1 inhibitors in preclinical and clinical studies.
Momelotinib (MMB) is a JAK1/2 and ACVR1 inhibitor with demonstrated clinical activity in all 3 hallmarks of myelofibrosis (MF): anemia, constitutional symptoms, and splenomegaly. In this phase 2 open-label translational biology study (NCT02515630) of 41 transfusion-dependent patients with MF, we explored mechanisms underlying the favorable activity of MMB on MF-associated iron-restricted anemia, including its impact on serum hepcidin levels, and markers of iron storage and availability, erythropoiesis, and inflammation. A transfusion-independent response (TI-R), defined as red blood cell transfusion independence (TI) ≥12 weeks at any time on study, occurred in 17 patients (41%; 95% confidence interval [CI], 26%-58%), including 14 patients (34%; 95% CI, 20%-51%) who achieved TI-R by week 24. In addition, 78% of TI nonresponse (TI-NR) patients achieved a ≥50% decrease in transfusion requirement for ≥8 weeks. Adverse events (AEs) were consistent with previous studies of MMB in MF, with cough, diarrhea, and nausea as the most common. Twenty-one patients experienced grade ≥3 AEs, most commonly anemia and neutropenia. Consistent with preclinical data, daily MMB treatment led to an acute and persistent decrease in blood hepcidin associated with increased iron availability and markers of erythropoiesis. Baseline characteristics associated with TI-R were lower inflammation and hepcidin as well as increased markers of erythropoiesis and bone marrow function. Overall, the study demonstrates that MMB treatment decreases hepcidin in conjunction with improving iron metabolism and erythropoiesis, suggesting a mechanistic explanation for the reduced transfusion dependency observed in transfusion-dependent MF patients treated with MMB, thereby addressing the key unmet medical need in the MF population.
Statins have shown promise as anticancer agents in experimental and epidemiologic research. However, any benefit that they provide is likely context-dependent, for example, applicable only to certain cancers or in combination with specific anticancer drugs. We report that inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) using statins enhances the proapoptotic activity of the B cell lymphoma-2 (BCL2) inhibitor venetoclax (ABT-199) in primary leukemia and lymphoma cells but not in normal human peripheral blood mononuclear cells. By blocking mevalonate production, HMGCR inhibition suppressed protein geranylgeranylation, resulting in up-regulation of proapoptotic protein p53 up-regulated modulator of apoptosis (PUMA). In support of these findings, dynamic BH3 profiling confirmed that statins primed cells for apoptosis. Furthermore, in retrospective analyses of three clinical studies of chronic lymphocytic leukemia, background statin use was associated with enhanced response to venetoclax, as demonstrated by more frequent complete responses. Together, this work provides mechanistic justification and clinical evidence to warrant prospective clinical investigation of this combination in hematologic malignancies.
There are unresolved questions regarding the association between persistent leukocytosis and risk of thrombosis and disease evolution in polycythemia vera (PV), as much of the published literature on the topic does not appropriately use repeated-measures data or time-dependent modeling to answer these questions. To address this knowledge gap, we analyzed a retrospective database of 520 PV patients seen at 10 academic institutions across the United States. Taking hematologic laboratory data at ∼3-month intervals (or as available) for all patients for duration of follow-up, we used group-based trajectory modeling to identify latent clusters of patients who follow distinct trajectories with regard to their leukocyte, hematocrit, and platelet counts over time. We then tested the association between trajectory membership and hazard of 2 major outcomes: thrombosis and disease evolution to myelofibrosis, myelodysplastic syndrome, or acute myeloid leukemia. Controlling for relevant covariates, we found that persistently elevated leukocyte trajectories were not associated with the hazard of a thrombotic event (P = .4163), but were significantly associated with increased hazard of disease evolution in an ascending stepwise manner (overall P = .0002). In addition, we found that neither hematocrit nor platelet count was significantly associated with the hazard of thrombosis or disease evolution.
Patients with myeloproliferative neoplasms (MPN) have high levels of inflammatory cytokines, some of which drive many of the debilitating constitutional symptoms associated with the disease and may also promote expansion of the neoplastic clone. We report here that monocytes from patients with MPN have defective negative regulation of Toll-like receptor (TLR) signaling that leads to unrestrained production of the inflammatory cytokine tumor necrosis factor α (TNF-α) after TLR activation. Specifically, monocytes of patients with MPN are insensitive to the anti-inflammatory cytokine interleukin 10 (IL-10) that negatively regulates TLR-induced TNF-α production. This inability to respond to IL-10 is a not a direct consequence of JAK2V617F, as the phenotype of persistent TNF-α production is a feature of JAK2V617F and wild-type monocytes alike from JAK2V617F-positive patients. Moreover, persistent TNF-α production was also discovered in the unaffected identical twin of a patient with MPN, suggesting it could be an intrinsic feature of those predisposed to acquire MPN. This work implicates sustained TLR signaling as not only a contributor to the chronic inflammatory state of MPN patients but also a potential predisposition to acquire MPN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.