Adenosine-to-inosine (A-to-I) editing modifies RNA transcripts from their genomic blueprint. A prerequisite for this process is a double-stranded RNA (dsRNA) structure. Such dsRNAs are formed as part of the microRNA (miRNA) maturation process, and it is therefore expected that miRNAs are affected by A-to-I editing. Editing of miRNAs has the potential to add another layer of complexity to gene regulation pathways, especially if editing occurs within the miRNA–mRNA recognition site. Thus, it is of interest to study the extent of this phenomenon. Current reports in the literature disagree on its extent; while some reports claim that it may be widespread, others deem the reported events as rare. Utilizing a next-generation sequencing (NGS) approach supplemented by an extensive bioinformatic analysis, we were able to systematically identify A-to-I editing events in mature miRNAs derived from human brain tissues. Our algorithm successfully identified many of the known editing sites in mature miRNAs and revealed 17 novel human sites, 12 of which are in the recognition sites of the miRNAs. We confirmed most of the editing events using in vitro ADAR overexpression assays. The editing efficiency of most sites identified is very low. Similar results are obtained for publicly available data sets of mouse brain-regions tissues. Thus, we find that A-to-I editing does alter several miRNAs, but it is not widespread.
The availability of complete genome sequences has made it clear that gene number is not the sole determinant of the complexity of the proteome. Additional complexity that is not readily detected by genome analysis is present in the number and types of RNA transcript that can be derived from each locus. Although alternative splicing is a well-recognized method of generating diversity, the more subtle mechanism of RNA editing is less familiar.
Adenosine deaminases that act on dsRNA (ADARs) are enzymes that target double-stranded regions of RNA converting adenosines into inosines (A-to-I editing) thus contributing to genome complexity and fine regulation of gene expression. It has been described that a member of the ADAR family, ADAR1, can target viruses and affect their replication process. Here we report evidence showing that ADAR1 stimulates human immuno deficiency virus type 1 (HIV-1) replication by using both editing-dependent and editing-independent mechanisms. We show that over-expression of ADAR1 in HIV-1 producer cells increases viral protein accumulation in an editing-independent manner. Moreover, HIV-1 virions generated in the presence of over-expressed ADAR1 but not an editing-inactive ADAR1 mutant are released more efficiently and display enhanced infectivity, as demonstrated by challenge assays performed with T cell lines and primary CD4+ T lymphocytes. Finally, we report that ADAR1 associates with HIV-1 RNAs and edits adenosines in the 5′ untranslated region (UTR) and the Rev and Tat coding sequence. Overall these results suggest that HIV-1 has evolved mechanisms to take advantage of specific RNA editing activity of the host cell and disclose a stimulatory function of ADAR1 in the spread of HIV-1.
Grade IV astrocytoma or glioblastoma multiforme (GBM) is one of the most aggressive and lethal tumors affecting humans. ADAR2-mediated A-to-I RNA editing, an essential post-transcriptional modification event in brain, is impaired in GBMs and astrocytoma cell lines. However, the role of ADAR2 editing in astrocytomas remains to be defined. Here, we show that ADAR2 editing rescue in astrocytomas prevents tumor growth in vivo and modulates an important cell cycle pathway involving the Skp2/p21/p27 proteins, often altered in glioblastoma. We demonstrate that ADAR2 deaminase activity is essential to inhibit tumor growth. Indeed, we identify the phosphatase CDC14B, which acts upstream of the Skp2/p21/p27 pathway, as a novel and critical ADAR2 target gene involved in glioblastoma growth. Specifically, ADAR2-mediated editing on CDC14B pre-mRNA increases its expression with a consequent reduction of the Skp2 target protein, as shown both in vitro and in vivo. We found that, compared to normal brain, both CDC14B editing and expression are progressively impaired in astrocytomas from grade I to IV, being very low in GBMs. These findings (1) demonstrate that post-transcriptional A-to-I RNA editing might be crucial for glioblastoma pathogenesis, (2) identify ADAR2-editing enzyme as a novel candidate tumor suppressor gene and (3) provide proof of principle that ADAR2 or its substrates may represent a suitable target(s) for possible novel, more effective and less toxic approaches to the treatment of GBMs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.