A mild and operationally simple iron-catalyzed protocol for the selective aerobic oxidation of aromatic olefins to carbonyl compounds is described. Catalyzed by a Fe(III) species bearing a pyridine bisimidazoline ligand at 1 atm of O2, α- and β-substituted styrenes were cleaved to afford benzaldehydes and aromatic ketones generally in high yields with excellent chemoselectivity and very good functional group tolerance, including those containing radical-sensitive groups. With α-halo-substituted styrenes, the oxidation took place with concomitant halide migration to afford α-halo acetophenones. Various observations have been made, pointing to a mechanism in which both molecular oxygen and the olefinic substrate coordinate to the iron center, leading to the formation of a dioxetane intermediate, which collapses to give the carbonyl product.
Catalytic hydrogenation of carboxylic acid esters is essential for the green production of pharmaceuticals, fragrances, and fine chemicals. Herein, we report the efficient hydrogenation of esters with manganese catalysts based on simple bidentate aminophosphine ligands. Monoligated Mn PN complexes are particularly active for the conversion of esters into the corresponding alcohols at Mn concentrations as low as 0.2 mol % in the presence of sub‐stoichiometric amounts of KOtBu base.
Selective α-oxidation of ethers under aerobic conditions is a long-pursued transformation; however, a green and efficient catalytic version of this reaction remains challenging. Herein, we report a new family of iron catalysts capable of promoting chemoselective α-oxidation of a range of ethers with excellent mass balance and high turnover numbers under 1 atm of O2 with no need for any additives. Unlike metalloenzymes and related biomimetics, the catalyst produces H2 as the only byproduct. Mechanistic investigations provide evidence for an unexpected two-step reaction pathway, which involves dehydrogenative incorporation of O2 into the ether to give a peroxobisether intermediate followed by cleavage of the peroxy bond to form two ester molecules, releasing stoichiometric H2 gas in each step. The operational simplicity and environmental friendliness of this methodology affords a useful alternative for performing oxidation, while the unique ability of the catalyst in oxygenating a substrate via dehydrogenation points to a new direction for understanding metalloenzymes and designing new biomimetic catalysts.
A new strategy has been developed for the oxidant- and base-free dehydrogenative coupling of N-heterocycles at mild conditions. Under the action of an iridium catalyst, N-heterocycles undergo multiple sp(3) CH activation steps, generating a nucleophilic enamine that reacts in situ with various electrophiles to give highly functionalized products. The dehydrogenative coupling can be cascaded with Friedel-Crafts addition, resulting in a double functionalization of the N-heterocycles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.