Increasing drug resistance in gastrointestinal (GI) parasites of livestock and concerns about chemical residues in animal products and the environment are driving the development of alternative control strategies that are less reliant on the use of synthetic drugs. An increasingly investigated approach is the use of bioactive forages with antiparasitic properties as part of the animal’s diet (nutraceuticals) or as potential sources of novel, natural parasiticides. Chicory (Cichorium intybus) is a multi-purpose crop and one of the most promising bioactive forages in temperate regions, and numerous in vivo trials have explored its potential against parasitic nematodes in livestock. However, it is unclear whether chicory can induce a direct and broad activity against various GI parasites in different livestock species, and the levels of chicory in the diet that are required to exert an efficient antiparasitic effect. Moreover, the mechanisms leading to the reported parasiticidal activity of chicory are still largely unknown, and its bioactive phytochemicals have only recently been investigated. In this review, we summarise the progress in the study of the antiparasitic activity of chicory and its natural bioactive compounds against GI parasites in livestock, through examination of the published literature. The available evidence indicates that feeding chicory can reduce faecal egg counts and/or worm burdens of abomasal nematodes, but not infections with intestinal worms, in ruminants. Highly chicory-rich diets (≥ 70% of chicory dry matter in the diet) may be necessary to directly affect abomasal parasitism. Chicory is known to synthesise several bioactive compounds with potential antiparasitic activity, but most research has been devoted to the role of sesquiterpene lactones (SL). Recent in vitro studies have confirmed direct and potent activity of SL-rich extracts from chicory against different GI helminths of livestock. Chicory SL have also been reported to exhibit antimalarial properties and its potential antiprotozoal activity in livestock remains to be evaluated. Furthermore, the detailed identification of the main antiparasitic metabolites of chicory and their pharmacokinetics need further confirmation. Research gaps and perspectives on the potential use of chicory as a nutraceutical forage and a source of bioactive compounds for parasite control in livestock are discussed.
Increasing resistance towards anthelmintic drugs has necessitated the search for alternative treatments for the control of gastrointestinal nematode parasites. Animals fed on chicory ( Cichorium intybus L.), a temperate (pasture) crop, have reduced parasite burdens, hence making C. intybus a potentially useful source for novel anthelmintic compounds or a diet-based preventive/therapeutic option. Here, we utilized in vitro bioassays with the parasitic nematode Ascaris suum and molecular networking techniques with five chicory cultivars to identify putative active compounds. Network analysis predicted sesquiterpene lactones (SL) as the most likely group of anthelmintic compounds. Further bioassay-guided fractionation supported these predictions, and isolation of pure compounds demonstrated that the SL 8-deoxylactucin (8-DOL) is the compound most strongly associated with anti-parasitic activity. Furthermore, we showed that 8-DOL acts in a synergistic combination with other SL to exert the anti-parasitic effects. Finally, we established that chicory-derived extracts also showed activity against two ruminant nematodes ( Teladorsagia circumcincta and Cooperia oncophora ) in in vitro assays. Collectively, our results confirm the anti-parasitic activity of chicory against a range of nematodes, and pave the way for targeted extraction of active compounds or selective breeding of specific cultivars to optimize its future use in human and veterinary medicine.
Cryptosporidium spp. are responsible for severe public health problems and livestock production losses. Treatment options are limited to only one drug available for human and bovine cryptosporidiosis, respectively, and both drugs exhibit only partial efficacy. Sesquiterpene lactones (SL) are plant bioactive compounds that function as a defence mechanism against herbivores. SL have demonstrated anti-parasitic properties against a range of parasitic taxa but knowledge about their anti-Cryptosporidium efficacy is limited. The effect of SL-rich leaf and root extracts from chicory (Cichorium intybus cv. Spadona) was investigated using human colon adenocarcinoma (HCT-8) cells infected with Cryptosporidium parvum. C. parvum oocysts were inoculated onto the cell monolayer and i) incubated for 4 hours with extracts (leaf and root extracts 300, 150, 75, 37.5, 18.75 and 9.375 μg/mL) in triplicates followed by incubation in bioactive free media (sporozoite invasion assays) or ii) incubated for 4 hours in bioactive free media followed by 48-hours incubation with extracts (growth inhibition assays). Extract toxicity on HCT-8 cells was assessed via water-soluble tetrazolium (WST)-1 assay prior to quantifying parasitic growth via immunofluorescence. Both extracts demonstrated dose-dependent inhibition in the growth inhibition assays (p = < 0.0001 for both extracts) but not in the invasion assays. Anti-parasitic activity did not appear to be solely related to SL content, with the extract with lower SL content (leaf) exhibiting higher inhibition at 300 μg/ml. However, given the limited treatment options available for Cryptosporidium spp., our study encourages further investigation into the use of chicory extracts to identify novel active compound(s) inhibiting these protozoa.
Abiotic environmental stresses have a negative impact on the yield and quality of crops. Understanding these stresses is an essential enabler for mitigating breeding strategies and it becomes more important as the frequency of extreme weather conditions increases due to climate change. This study analyses the response of barley (Hordeum vulgare L.) to a heat wave during grain filling in three distinct stages: the heat wave itself, the return to a normal temperature regime, and the process of maturation and desiccation. The properties and structure of the starch produced were followed throughout the maturational stages. Furthermore, the key enzymes involved in the carbohydrate supply to the grain were monitored. We observed differences in starch structure with well-separated effects because of heat stress and during senescence. Heat stress produced marked effects on sucrolytic enzymes in source and sink tissues. Early cessation of plant development as an indirect consequence of the heat wave was identified as the major contributor to final yield loss from the stress, highlighting the importance for functional stay-green traits for the development of heat-resistant cereals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.