BackgroundDuring the process of spermatogenesis, male germ cells undergo dramatic chromatin reorganization, whereby most histones are replaced by protamines, as part of the pathway to compact the genome into the small nuclear volume of the sperm head. Remarkably, approximately 90 % (human) to 95 % (mouse) of histones are evicted during the process. An intriguing hypothesis is that post-translational modifications (PTMs) decorating histones play a critical role in epigenetic regulation of spermatogenesis and embryonic development following fertilization. Although a number of specific histone PTMs have been individually studied during spermatogenesis and in mature mouse and human sperm, to date, there is a paucity of comprehensive identification of histone PTMs and their dynamics during this process.ResultsHere we report systematic investigation of sperm histone PTMs and their dynamics during spermatogenesis. We utilized “bottom-up” nanoliquid chromatography–tandem mass spectrometry (nano-LC–MS/MS) to identify histone PTMs and to determine their relative abundance in distinct stages of mouse spermatogenesis (meiotic, round spermatids, elongating/condensing spermatids, and mature sperm) and in human sperm. We detected peptides and histone PTMs from all four canonical histones (H2A, H2B, H3, and H4), the linker histone H1, and multiple histone isoforms of H1, H2A, H2B, and H3 in cells from all stages of mouse spermatogenesis and in mouse sperm. We found strong conservation of histone PTMs for histone H3 and H4 between mouse and human sperm; however, little conservation was observed between H1, H2A, and H2B. Importantly, across eight individual normozoospermic human semen samples, little variation was observed in the relative abundance of nearly all histone PTMs.ConclusionIn summary, we report the first comprehensive and unbiased analysis of histone PTMs at multiple time points during mouse spermatogenesis and in mature mouse and human sperm. Furthermore, our results suggest a largely uniform histone PTM signature in sperm from individual humans.Electronic supplementary materialThe online version of this article (doi:10.1186/s13072-016-0072-6) contains supplementary material, which is available to authorized users.
Genomic imprinting affects a subset of genes in mammals, such that they are expressed in a monoallelic, parent-of-origin-specific manner. These genes are regulated by imprinting control regions (ICRs), cis-regulatory elements that exhibit allele-specific differential DNA methylation. Although genomic imprinting is conserved in mammals, ICRs are genetically divergent across species. This raises the fundamental question of whether the ICR plays a species-specific role in regulating imprinting at a given locus. We addressed this question at the H19/insulin-like growth factor 2 (Igf2) imprinted locus, the misregulation of which is associated with the human imprinting disorders Beckwith-Wiedemann syndrome (BWS) and Silver-Russell syndrome (SRS). We generated a knock-in mouse in which the endogenous H19/Igf2 ICR (mIC1) is replaced by the orthologous human ICR (hIC1) sequence, designated H19 hIC1 . We show that hIC1 can functionally replace mIC1 on the maternal allele. In contrast, paternally transmitted hIC1 leads to growth restriction, abnormal hIC1 methylation, and loss of H19 and Igf2 imprinted expression. Imprint establishment at hIC1 is impaired in the male germ line, which is associated with an abnormal composition of histone posttranslational modifications compared with mIC1. Overall, this study reveals evolutionarily divergent paternal imprinting at IC1 between mice and humans. The conserved maternal imprinting mechanism and function at IC1 demonstrates the possibility of modeling maternal transmission of hIC1 mutations associated with BWS in mice. In addition, we propose that further analyses in the paternal knockin H19 +/hIC1 mice will elucidate the molecular mechanisms that may underlie SRS.G enomic imprinting is a conserved, epigenetic process in mammals that regulates the expression of a small number of genes in a monoallelic, parent-of-origin-specific manner. Typically clustered within domains, the parental-specific expression of imprinted genes is controlled by a cis-regulatory element, the imprinting control region (ICR). During gametogenesis, ICRs acquire differential DNA methylation patterns according to the sex of the germ cells. This DNA methylation is maintained in somatic cells after fertilization but is erased in primordial germ cells, allowing the establishment of sex-specific imprints in mature gametes. The proper establishment, maintenance, and erasure of imprints are crucial for the correct expression of imprinted genes. Misregulation of imprinted genes is associated with human imprinting disorders, including Beckwith-Wiedemann syndrome (BWS), an overgrowth disorder, and Silver-Russell syndrome (SRS), an undergrowth disorder (1-3).Mouse models have been valuable to the study of imprinting at the H19/insulin-like growth factor 2 (Igf2) locus, serving as a proxy for the orthologous human locus. On distal mouse chromosome 7, reciprocal imprinting of the paternally expressed fetal growth factor gene, Igf2, and the maternally expressed noncoding RNA, H19, is regulated by the ICR located between H...
Highlights d ATAC-seq localizes retained nucleosomes to promoters and repetitive DNA in sperm d Gcn5-mediated histone acetylation is necessary for proper spermiogenesis d Gcn5 loss alters chromatin dynamics leading to increased histone retention in sperm d Gcn5 is necessary for normal sperm formation and male fertility in mice
e During spermiogenesis, the postmeiotic phase of mammalian spermatogenesis, transcription is progressively repressed as nuclei of haploid spermatids are compacted through a dramatic chromatin reorganization involving hyperacetylation and replacement of most histones with protamines. Although BRDT functions in transcription and histone removal in spermatids, it is unknown whether other BET family proteins play a role. Immunofluorescence of spermatogenic cells revealed BRD4 in a ring around the nuclei of spermatids containing hyperacetylated histones. The ring lies directly adjacent to the acroplaxome, the cytoskeletal base of the acrosome, previously linked to chromatin reorganization. The BRD4 ring does not form in acrosomal mutant mice. Chromatin immunoprecipitation followed by sequencing in spermatids revealed enrichment of BRD4 and acetylated histones at the promoters of active genes. BRD4 and BRDT show distinct and synergistic binding patterns, with a pronounced enrichment of BRD4 at spermatogenesis-specific genes. Direct association of BRD4 with acetylated H4 decreases in late spermatids as acetylated histones are removed from the condensing nucleus in a wave following the progressing acrosome. These data provide evidence of a prominent transcriptional role for BRD4 and suggest a possible removal mechanism for chromatin components from the genome via the progressing acrosome as transcription is repressed and chromatin is compacted during spermiogenesis.
PM20D1 is a candidate thermogenic enzyme in mouse fat, with its expression cold-induced and enriched in brown versus white adipocytes. Thiazolidinedione (TZD) antidiabetic drugs, which activate the peroxisome proliferator-activated receptor-γ (PPARγ) nuclear receptor, are potent stimuli for adipocyte browning yet fail to induce Pm20d1 expression in mouse adipocytes. In contrast, PM20D1 is one of the most strongly TZD-induced transcripts in human adipocytes, although not in cells from all individuals. Two putative PPARγ binding sites exist near the gene’s transcription start site (TSS) in human but not mouse adipocytes. The −4 kb upstream site falls in a segmental duplication of a nearly identical intronic region +2.5 kb downstream of the TSS, and this duplication occurred in the primate lineage and not in other mammals, like mice. PPARγ binding and gene activation occur via this upstream duplicated site, thus explaining the species difference. Furthermore, this functional upstream PPARγ site exhibits genetic variation among people, with 1 SNP allele disrupting a PPAR response element and giving less activation by PPARγ and TZDs. In addition to this upstream variant that determines PPARγ regulation of PM20D1 in adipocytes, distinct variants downstream of the TSS have strong effects on PM20D1 expression in human fat as well as other tissues. A haplotype of 7 tightly linked downstream SNP alleles is associated with very low PMD201 expression and correspondingly high DNA methylation at the TSS. These PM20D1 low-expression variants may account for human genetic associations in this region with obesity as well as neurodegenerative diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.