Public transportation users increase as the population grows. In Taipei, Taiwan, this tendency is observed by analyzing historical data from the Mass Rapid Transit (MRT) and economy-shared bicycle (known as YouBike) riders. While this trend exists, the Taipei City government promotes green transportation by providing discounts to users who transfer from MRT or bus to YouBike within a particular period. Therefore, this study focuses on analyzing the patterns of users in order to identify possible clusters. Clusters of customers can be considered fundamental and competitive factors for the Ministry of Transportation to encourage the use of green transportation and promote a sustainable environment. Based on big data smart card information, this paper proposes using the RFM and K-means clustering algorithm to analyze and construct mode-switching traveller profiles on MRT and YouBike riders. As a result, three distinct clusters of MRT-YouBike riders have been identified: potential, vulnerable, and loyal. There are also suggestions regarding the most profitable groups, which customers to focus on, and to whom give special offers or promotions to foster loyalty among transit travellers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.