The Gottesman-Kitaev-Preskill (GKP) encoding of a qubit within an oscillator is particularly appealing for fault-tolerant quantum computing with bosons because Gaussian operations on encoded Pauli eigenstates enable Clifford quantum computing with error correction. We show that applying GKP error correction to Gaussian input states, such as vacuum, produces distillable magic states, achieving universality without additional non-Gaussian elements. Fault tolerance is possible with sufficient squeezing and low enough external noise. Thus, Gaussian operations are sufficient for fault-tolerant, universal quantum computing given a supply of GKP-encoded Pauli eigenstates.
Weak measurement of a quantum system followed by postselection based on a subsequent strong measurement gives rise to a quantity called the weak value: a complex number for which the interpretation has long been debated. We analyse the procedure of weak measurement and postselection, and the interpretation of the associated weak value, using a theory of classical mechanics supplemented by an epistemic restriction that is known to be operationally equivalent to a subtheory of quantum mechanics. Both the real and imaginary components of the weak value appear as phase space displacements in the postselected expectation values of the measurement deviceʼs position and momentum distributions, and we recover the same displacements as in the quantum case by studying the corresponding evolution in our theory of classical mechanics with an epistemic restriction. By using this epistemically restricted theory, we gain insight into the appearance of the weak value as a result of the statistical effects of post selection, and this provides us with an operational interpretation of the weak value, both its real and imaginary parts. We find that the imaginary part of the weak value is a measure of how much postselection biases the mean phase space distribution for a given amount of measurement disturbance. All such biases proportional to the imaginary part of the weak value vanish in the limit where disturbance due to measurement goes to zero. Our analysis also offers intuitive insight into how measurement disturbance can be minimized and the limits of weak measurement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.