Background In recent years, mHealth has increasingly been used to deliver behavioral interventions for disease prevention and self-management. Computing power in mHealth tools can provide unique functions beyond conventional interventions in provisioning personalized behavior change recommendations and delivering them in real time, supported by dialogue systems. However, design principles to incorporate these features in mHealth interventions have not been systematically evaluated. Objective The goal of this review is to identify best practices for the design of mHealth interventions targeting diet, physical activity, and sedentary behavior. We aim to identify and summarize the design characteristics of current mHealth tools with a focus on the following features: (1) personalization, (2) real-time functions, and (3) deliverable resources. Methods We will conduct a systematic search of electronic databases, including MEDLINE, CINAHL, Embase, PsycINFO, and Web of Science for studies published since 2010. First, we will use keywords that combine mHealth, interventions, chronic disease prevention, and self-management. Second, we will use keywords that cover diet, physical activity, and sedentary behavior. Literature found in the first and second steps will be combined. Finally, we will use keywords for personalization and real-time functions to limit the results to interventions that have reported these design features. We expect to perform narrative syntheses for each of the 3 target design features. Study quality will be evaluated using the Risk of Bias 2 assessment tool. Results We have conducted a preliminary search of existing systematic reviews and review protocols on mHealth-supported behavior change interventions. We have identified several reviews that aimed to evaluate the efficacy of mHealth behavior change interventions in a range of populations, evaluate methodologies for assessing mHealth behavior change randomized trials, and assess the diversity of behavior change techniques and theories in mHealth interventions. However, syntheses on the unique features of mHealth intervention design are absent in the literature. Conclusions Our findings will provide a basis for developing best practices for designing mHealth tools for sustainable behavior change. Trial Registration PROSPERO CRD42021261078; https://tinyurl.com/m454r65t International Registered Report Identifier (IRRID) PRR1-10.2196/39093
BACKGROUND In recent years, mHealth has increasingly been used to deliver behavioral interventions for disease prevention and self-management. Computing power in mHealth tools can provide unique functions beyond conventional interventions in provisioning personalized behavior change recommendations and delivering them in real time, supported by dialogue systems. However, design principles to incorporate these features in mHealth interventions have not been systematically evaluated. OBJECTIVE The goal of this review is to identify best practices for the design of mHealth interventions targeting diet, physical activity, and sedentary behavior. We aim to identify and summarize the design characteristics of current mHealth tools with a focus on the following features: (1) personalization, (2) real-time functions, and (3) deliverable resources. METHODS We will conduct a systematic search of electronic databases, including MEDLINE, CINAHL, Embase, PsycINFO, and Web of Science for studies published since 2010. First, we will use keywords that combine mHealth, interventions, chronic disease prevention, and self-management. Second, we will use keywords that cover diet, physical activity, and sedentary behavior. Literature found in the first and second steps will be combined. Finally, we will use keywords for personalization and real-time functions to limit the results to interventions that have reported these design features. We expect to perform narrative syntheses for each of the 3 target design features. Study quality will be evaluated using the Risk of Bias 2 assessment tool. RESULTS We have conducted a preliminary search of existing systematic reviews and review protocols on mHealth-supported behavior change interventions. We have identified several reviews that aimed to evaluate the efficacy of mHealth behavior change interventions in a range of populations, evaluate methodologies for assessing mHealth behavior change randomized trials, and assess the diversity of behavior change techniques and theories in mHealth interventions. However, syntheses on the unique features of mHealth intervention design are absent in the literature. CONCLUSIONS Our findings will provide a basis for developing best practices for designing mHealth tools for sustainable behavior change. CLINICALTRIAL PROSPERO CRD42021261078; https://tinyurl.com/m454r65t INTERNATIONAL REGISTERED REPORT PRR1-10.2196/39093
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.