We used a mouse model to test the hypothesis that the time course and histology of wound healing is altered in hemophilia B. Punch biopsies (3 mm) were placed in the skin of normal mice and mice with hemophilia. The size of the wounds was measured daily until the epidermal defect closed. All wounds closed in mice with hemophilia by 12 days, compared with 10 days in normal animals. Skin from the area of the wound was harvested at different time points and examined histologically. Hemophilic animals developed subcutaneous hematomas; normal animals did not. Macrophage infiltration was significantly delayed in hemophilia B. Unexpectedly, hemophilic mice developed twice as many blood vessels in the healing wounds as controls, and the increased vascularity persisted for at least 2 weeks. The deposition and persistence of ferric iron was also greater in hemophilic mice. We hypothesize that iron plays a role in promoting excess angiogenesis after wounding as it had been proposed to do in hemophilic arthropathy. We have demonstrated that impaired coagulation leads to delayed wound healing with abnormal histology. Our findings have significant implications for treatment of patients with hemophilia, and also highlight the importance of rapidly establishing hemostasis following trauma or surgery. (Blood. 2006; 108:3053-3060)
We have previously shown functional differences in fibrinogen from hyperhomocysteinemic rabbits compared to that in control rabbits. This acquired dysfibrinogenemia is characterized by fibrin clots that are composed of abnormally thin, tightly packed fibers with increased resistance to fibrinolysis. Homocysteine thiolactone is a metabolite of homocysteine (Hcys) that can react with primary amines. Recent evidence suggests that Hcys thiolactone-lysine adducts form in vivo. We now demonstrate that the reaction of Hcys thiolactone with purified fibrinogen in vitro produces fibrinogen (Hcys fibrinogen) with functional properties that are strikingly similar to those we have observed in homocysteinemic rabbits. Fibrinogen purified from homocysteinemic rabbits and Hcys fibrinogen are similar in that (1) they both form clots composed of thinner, more tightly packed fibers than their respective control rabbit and human fibrinogens; (2) the clot structure could be made to be more like the control fibrinogens by increased calcium; and (3) they both form clots that are more resistant to fibrinolysis than those formed by the control fibrinogens. Further characterization of human fibrinogens showed that Hcys fibrin had similar plasminogen binding to that of the control and an increased capacity for binding tPA. However, tPA activation of plasminogen on Hcys fibrin was slower than that of the control. Mass spectrometric analysis of Hcys fibrinogen revealed twelve lysines that were homocysteinylated. Several of these are close to tPA and plasminogen binding sites. Lysines are major binding sites for fibrinolytic enzymes and are also sites of plasmin cleavage. Thus, modification of lysines in fibrinogen could plausibly lead to impaired fibrinolysis. We hypothesize that the modification of lysine by Hcys thiolactone might occur in vivo, lead to abnormal resistance of clots to lysis, and thereby contribute to the prothrombotic state associated with homocysteinemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.