Most tissues of the body harbor resident macrophages. Yet, macrophages are phenotypically and functionally heterogeneous, a reflection of the diversity of tissue environments in which they reside. In addition to maintaining tissue homeostasis and responding to invading pathogens, macrophages contribute to numerous pathological processes, making them an attractive potential target for therapeutic intervention. To do so, however, will require a detailed understanding of macrophage origins, the mechanisms that maintain them, and their functional attributes in different tissues and disease contexts.Macrophage ontology has long engendered controversy 1,2 . Nevertheless, the concept that tissue macrophages develop exclusively from circulating bone marrow-derived monocytes has prevailed for nearly a half century 3 . Accumulated evidence, however, including recent studies using sophisticated fate-mapping approaches, have determined that some tissue macrophages and their precursors are established embryonically in the yolk sac (YS) and fetal liver before the onset of definitive hematopoiesis [4][5][6][7][8][9][10][11] . Regardless of their origin, tissue macrophages can maintain themselves in adulthood by self-renewal independent of blood monocytes 12,13 .Gene-expression profiling of macrophage populations from several tissues has established that only a small number of transcripts are expressed by all macrophages 14 , indicating the importance of the context provided by the tissue when studying macrophage function in homeostasis and disease. The normal arterial wall contains many tissue resident macrophages that contribute crucially to immunity, tissue homeostasis and wound healing following injury 15. However, the regulatory networks, ancestry and mechanisms that maintain arterial macrophages remain unknown.Using gene expression analysis, we show that arterial macrophages constitute a distinct population among tissue macrophages. Multiple fate mapping approaches demonstrated that arterial macrophages arise embryonically from CX 3 CR1 + precursors and postnatally from bone marrow-derived monocytes that colonize the tissue during a brief period immediately after birth.In adulthood, arterial macrophages were maintained by CX 3 CR1-CX 3 CL1 interactions and local proliferation without significant further contribution from blood monocytes. Self-renewal also sustained arterial macrophages after severe depletion during polymicrobial sepsis, rapidly restoring them to functional homeostasis. ResultsPhenotype and gene expression profiling of arterial macrophages. (Fig. 1a).Principal component analysis revealed a distinct transcriptome in arterial macrophages, which clustered near other macrophage populations including microglia, alveolar macrophages, and splenic red pulp macrophages, as characterized by the Immunological Genome Consortium (Fig. 1b, Supplementary Fig. 1a) 14. Stringent comparison of gene-expression profiles among arterial, brain, alveolar and splenic red pulp macrophages revealed 212 transcripts that were at ...
SUMMARY Virtual reality (VR) has been used to manage pain and distress associated with a wide variety of known painful medical procedures. In clinical settings and experimental studies, participants immersed in VR experience reduced levels of pain, general distress/unpleasantness and report a desire to use VR again during painful medical procedures. Investigators hypothesize that VR acts as a nonpharmacologic form of analgesia by exerting an array of emotional affective, emotion-based cognitive and attentional processes on the body’s intricate pain modulation system. While the exact neurobiological mechanisms behind VR’s action remain unclear, investigations are currently underway to examine the complex interplay of cortical activity associated with immersive VR. Recently, new applications, including VR, have been developed to augment evidenced-based interventions, such as hypnosis and biofeedback, for the treatment of chronic pain. This article provides a comprehensive review of the literature, exploring clinical and experimental applications of VR for acute and chronic pain management, focusing specifically on current trends and recent developments. In addition, we propose mechanistic theories highlighting VR distraction and neurobiological explanations, and conclude with new directions in VR research, implications and clinical significance.
The tyrosine kinase c-Met promotes the formation and malignant progression of multiple cancers. It is well known that c-Met hyperactivation increases tumorigenicity and tumor cell resistance to DNA damaging agents, properties associated with tumor-initiating stem cells. However, a link between c-Met signaling and the formation and/or maintenance of neoplastic stem cells has not been previously identified. Here, we show that c-Met is activated and functional in glioblastoma (GBM) neurospheres enriched for glioblastoma tumorinitiating stem cells and that c-Met expression/function correlates with stem cell marker expression and the neoplastic stem cell phenotype in glioblastoma neurospheres and clinical glioblastoma specimens. c-Met activation was found to induce the expression of reprogramming transcription factors (RFs) known to support embryonic stem cells and induce differentiated cells to form pluripotent stem (iPS) cells, and c-Met activation counteracted the effects of forced differentiation in glioblastoma neurospheres. Expression of the reprogramming transcription factor Nanog by glioblastoma cells is shown to mediate the ability of c-Met to induce the stem cell characteristics of neurosphere formation and neurosphere cell self-renewal. These findings show that c-Met enhances the population of glioblastoma stem cells (GBM SCs) via a mechanism requiring Nanog and potentially other c-Met-responsive reprogramming transcription factors.cancer stem cell | hepatocyte growth factor | Sox2 | Oct4 | Klf4 G lioblastomas (GBMs) are heterogeneous aggressive neoplasms containing neoplastic stem-like cells (1). These cells commonly referred to as glioblastoma stem cells (GBM SCs), exhibit the capacity for unlimited growth as multicellular spheres in defined medium, multilineage differentiation, and efficient tumor initiation in immune-deficient animals. GBM SCs are currently believed to play a leading role in therapeutic resistance and tumor recurrence (2). Defining the origin(s) of GBM SCs and the biochemical/molecular pathways that support the stem-like tumor-initiating phenotype is of major importance.Transcription factors such as Sox2, c-Myc, Klf4, Oct4, and Nanog have an essential role in sustaining the growth and selfrenewal of embryonic stem (ES) cells. Introducing these transcription factors into mouse and human differentiated somatic cells results in their reprogramming into pluripotent ES-like cells called induced pluripotent stem (iPS) cells (3). Remarkable similarities exist between stem cell reprogramming and oncogenesis. Both processes are supported by alterations in the expression/function of similar collaborating genes perpetuating subpopulations of cells capable of indefinite self-renewal (4). Reprogramming transcription factors (RFs) display varying degrees of oncogenic potential, are overexpressed in human cancers, and their expression levels have been correlated with malignant progression and poor prognosis (5, 6). Loss of tumor suppressors such as p53 enhances the efficiency of iPS cell generation b...
With considerable national attention on the importance of patient-centered care, this project demonstrates the feasibility of obtaining highly reliable measures of patients' experiences with individual physicians and practices. The analytic findings underscore the validity and importance of looking beyond health plans to individual physicians and sites as we seek to improve health care quality.
A recent metaanalysis shows that 0.7% of nanoparticles are delivered to solid tumors. This low delivery efficiency has major implications in the translation of cancer nanomedicines, as most of the nanomedicines are sequestered by nontumor cells. To improve the delivery efficiency, there is a need to investigate the quantitative contribution of each organ in blocking the transport of nanoparticles to solid tumors. Here, we hypothesize that the removal of the liver macrophages, cells that have been reported to take up the largest amount of circulating nanoparticles, would lead to a significant increase in the nanoparticle delivery efficiency to solid tumors. We were surprised to discover that the maximum achievable delivery efficiency was only 2%. In our analysis, there was a clear correlation between particle design, chemical composition, macrophage depletion, tumor pathophysiology, and tumor delivery efficiency. In many cases, we observed an 18-150 times greater delivery efficiency, but we were not able to achieve a delivery efficiency higher than 2%. The results suggest the need to look deeper at other organs such as the spleen, lymph nodes, and tumor in mediating the delivery process. Systematically mapping the contribution of each organ quantitatively will allow us to pinpoint the cause of the low tumor delivery efficiency. This, in effect, enables the generation of a rational strategy to improve the delivery efficiency of nanoparticles to solid tumors either through the engineering of multifunctional nanosystems or through manipulation of biological barriers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.