The incidence and properties of active galactic nuclei (AGNs) in the field, groups, and clusters can provide new information about how these objects are triggered and fueled, similar to how these environments have been employed to study galaxy evolution. We have obtained new XMM-Newton observations of seven X-ray selected groups and poor clusters with 0.02 < z < 0.06 for comparison with previous samples that mostly included rich clusters and optically selected groups. Our final sample has ten groups and six clusters in this low-redshift range (split at a velocity dispersion of σ = 500 km s −1 ). We find that the X-ray selected AGN fraction increases from−0.016 in clusters to 0.091−0.034 for the groups (85% significance), or a factor of 2, for AGN above an 0.3-8 keV X-ray luminosity of 10 41 erg s −1 hosted by galaxies more luminous than M * R + 1. The trend is similar, although less significant, for a lower-luminosity host threshold of M R = −20 mag. For many of the groups in the sample, we have also identified AGN via standard emission-line diagnostics and find that these AGNs are nearly disjoint from the X-ray selected AGN. Because there are substantial differences in the morphological mix of galaxies between groups and clusters, we have also measured the AGN fraction for early-type galaxies alone to determine if the differences are directly due to environment, or indirectly due to the change in the morphological mix. We find that the AGN fraction in early-type galaxies is also lower in clusters −0.044 for the groups (92% significance), a result consistent with the hypothesis that the change in AGN fraction is directly connected to environment.
We test for galactic conformity at 0.2 < z < 1.0 to a projected distance of 5 Mpc using spectroscopic redshifts from the PRism MUlti-object Survey (PRIMUS). Our sample consists of ∼ 60, 000 galaxies in five separate fields covering a total of ∼ 5.5 square degrees, which allows us to account for cosmic variance. We identify star-forming and quiescent "isolated primary" (i.e., central) galaxies using isolation criteria and cuts in specific star formation rate. We match the redshift and stellar mass distributions of these samples, to control for correlations between quiescent fraction and redshift and stellar mass. We detect a significant (> 3σ) one-halo conformity signal, or an excess of star-forming neighbors around star-forming central galaxies, of ∼ 5% on scales of 0-1 Mpc and a 2.5σ two-halo signal of ∼ 1% on scales of 1-3 Mpc. These signals are weaker than those detected in SDSS and are consistent with galactic conformity being the result of large-scale tidal fields and reflecting assembly bias. We also measure the star-forming fraction of central galaxies at fixed stellar mass as a function of large-scale environment and find that central galaxies are more likely to be quenched in overdense environments, independent of stellar mass. However, we find that environment does not affect the star formation efficiency of central galaxies, as long as they are forming stars. We test for redshift and stellar mass dependence of the conformity signal within our sample and show that large volumes and multiple fields are required at intermediate redshift to adequately account for cosmic variance.
The Dark Energy Spectroscopic Instrument (DESI) is carrying out a five-year survey that aims to measure the redshifts of tens of millions of galaxies and quasars, including 8 million luminous red galaxies (LRGs) in the redshift range 0.4 < z ≲ 1.0. Here we present the selection of the DESI LRG sample and assess its spectroscopic performance using data from Survey Validation (SV) and the first two months of the Main Survey. The DESI LRG sample, selected using g, r, z, and W1 photometry from the DESI Legacy Imaging Surveys, is highly robust against imaging systematics. The sample has a target density of 605 deg−2 and a comoving number density of 5 × 10−4 h 3 Mpc−3 in 0.4 < z < 0.8; this is a significantly higher density than previous LRG surveys (such as SDSS, BOSS, and eBOSS) while also extending to z ∼ 1. After applying a bright star veto mask developed for the sample, 98.9% of the observed LRG targets yield confident redshifts (with a catastrophic failure rate of 0.2% in the confident redshifts), and only 0.5% of the LRG targets are stellar contamination. The LRG redshift efficiency varies with source brightness and effective exposure time, and we present a simple model that accurately characterizes this dependence. In the appendices, we describe the extended LRG samples observed during SV.
The Dark Energy Spectroscopic Instrument (DESI) embarked on an ambitious 5 yr survey in 2021 May to explore the nature of dark energy with spectroscopic measurements of 40 million galaxies and quasars. DESI will determine precise redshifts and employ the baryon acoustic oscillation method to measure distances from the nearby universe to beyond redshift z > 3.5, and employ redshift space distortions to measure the growth of structure and probe potential modifications to general relativity. We describe the significant instrumentation we developed to conduct the DESI survey. This includes: a wide-field, 3.°2 diameter prime-focus corrector; a focal plane system with 5020 fiber positioners on the 0.812 m diameter, aspheric focal surface; 10 continuous, high-efficiency fiber cable bundles that connect the focal plane to the spectrographs; and 10 identical spectrographs. Each spectrograph employs a pair of dichroics to split the light into three channels that together record the light from 360–980 nm with a spectral resolution that ranges from 2000–5000. We describe the science requirements, their connection to the technical requirements, the management of the project, and interfaces between subsystems. DESI was installed at the 4 m Mayall Telescope at Kitt Peak National Observatory and has achieved all of its performance goals. Some performance highlights include an rms positioner accuracy of better than 0.″1 and a median signal-to-noise ratio of 7 of the [O ii] doublet at 8 × 10−17 erg s−1 cm−2 in 1000 s for galaxies at z = 1.4–1.6. We conclude with additional highlights from the on-sky validation and commissioning, key successes, and lessons learned.
The Dark Energy Spectroscopic Instrument (DESI) Survey has obtained a set of spectroscopic measurements of galaxies to validate the final survey design and target selections. To assist in these tasks, we visually inspect DESI spectra of approximately 2500 bright galaxies, 3500 luminous red galaxies (LRGs), and 10,000 emission-line galaxies (ELGs) to obtain robust redshift identifications. We then utilize the visually inspected redshift information to characterize the performance of the DESI operation. Based on the visual inspection (VI) catalogs, our results show that the final survey design yields samples of bright galaxies, LRGs, and ELGs with purity greater than 99%. Moreover, we demonstrate that the precision of the redshift measurements is approximately 10 km s−1 for bright galaxies and ELGs and approximately 40 km s−1 for LRGs. The average redshift accuracy is within 10 km s−1 for the three types of galaxies. The VI process also helps improve the quality of the DESI data by identifying spurious spectral features introduced by the pipeline. Finally, we show examples of unexpected real astronomical objects, such as Lyα emitters and strong lensing candidates, identified by VI. These results demonstrate the importance and utility of visually inspecting data from incoming and upcoming surveys, especially during their early operation phases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.