Thioredoxins have been purified from pig heart and potato tuber mitochondria which differ in chromatographic behaviour, enzyme activating capacity, and slightly higher molecular mass (M,= 12 500) from the major thioredoxin(s) present in mitochondria-free fractions of the same tissue. Both mt-thioredoxins can serve as hydrogen donor for E.&i ribonucleotide reductase but only the plant protein activates spinach chloroplast NADP malate dehydrogenase in vitro. Mitochondrial target enzymes specifically activated by thioredoxin have not as yet been identified.
Introduction Per- and polyfluoroalkyl substances (PFAS) are a class of synthetic compounds used industrially for a wide variety of applications. These PFAS compounds are very stable and persist in the environment. The PFAS contamination is a growing health issue as these compounds have been reported to impact human health and have been detected in both domestic and global water sources. Contaminated water found on military bases poses a potentially serious health concern for active duty military, their families, and the surrounding communities. Previous detection methods for PFAS in contaminated water samples require expensive and time-consuming testing protocols that limit the ability to detect this important global pollutant. The main objective of this work was to develop a novel detection system that utilizes a biological reporter and engineered bacteria as a way to rapidly and efficiently detect PFAS contamination. Materials and Methods The United States Air Force Academy International Genetically Engineered Machine team is genetically engineering Rhodococcus jostii strain RHA1 to contain novel DNA sequences composed of a propane 2-monooxygenase alpha (prmA) promoter and monomeric red fluorescent protein (mRFP). The prmA promoter is activated in the presence of PFAS and transcribes the mRFP reporter. Results The recombinant R. jostii containing the prmA promoter and mRFP reporter respond to exposure of PFAS by activating gene expression of the mRFP. At 100 µM of perfluorooctanoic acid, the mRFP expression was increased 3-fold (qRT-PCR). Rhodococcus jostii without exposure to PFAS compounds had no mRFP expression. Conclusions This novel detection system represents a synthetic biology approach to more efficiently detect PFAS in contaminated samples. With further refinement and modifications, a similar system could be readily deployed in the field around the world to detect this critical pollutant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.