Two electron‐reduction of the TiIV guanidinate complex (ImDippN)(Xyketguan)TiCl2 gives (η6‐ImDippN)(xyketguan)Ti (1intra) and (ImDippN)(Xyketguan)Ti(η6‐C6H6) (1inter) (Xyketguan=[(tBuC=N)C(NXylyl)2]−, Xylyl=2,5‐dimethylphenyl) in the absence or presence of benzene, respectively. These complexes have been found to hydrogenate monocyclic and polycyclic arenes under relatively mild conditions (150 psi, 80 °C)—the first example of catalytic, homogeneous arene hydrogenation with TON >1 by a Group IV system.
Room temperature photolysis of the bis(azide)cobaltate(II) complex [Na(THF)x] [( ket guan)Co(N3)2] ( ket guan = [( t Bu2CN)C(NDipp)2] -, Dipp = 2,6-diisopropylphenyl) (3a) in THF cleanly forms the binuclear cobalt nitride [Na(THF)4{[( ket guan)Co(N3)]2(μ-N)}]n (1). Compound 1 represents the first example of an isolable, bimetallic cobalt nitride complex, and it has been fully characterized by spectroscopic, magnetic, and computational analyses. Density functional theory supports a Co III =N=Co III canonical form with significant π-bonding between the cobalt centers and the nitride atom. Unlike other Group 9 bridging nitride complexes, no radical character is detected at the bridging N-atom of 1. Indeed, 1 is unreactive towards weak C-H donors and even co-crystallizes with a molecule of cyclohexadiene (CHD) in its crystallographic unit cell to give 1•CHD as a room temperature stable product. Notably, addition of pyridine to 1 or photolyzed solutions of [( ket guan)Co(N3)(py)]2 (4a) leads to destabilization via activation of the nitride unit, resulting in the mixed-valent Co(II)/(III) bridged imido species [( ket guan)Co]2(μ-NH)(μ-N3) (5) formed from intermolecular hydrogen atom abstraction (HAA) of strong C-H bonds (BDE ~ 100 kcal/mol). Kinetic rate analysis of the formation of 5 in the presence of C6H12 or C6D12 gives a KIE = 2.5±0.1, supportive of a HAA formation pathway. The reactivity of our system was further probed by photolyzing C6D6/py-d5 solutions of 4a under an H2 atmosphere (150 psi), which leads to the exclusive formation of the bis(imido) [( ket guan)Co(μ-NH)]2 (6) as a result of dihydrogen activation. These results provide unique insights into the chemistry and electronic structure of late 3d-metal nitrides while providing entryway into C-H activation pathways.
<p>Two electron-reduction of the Ti(IV) guanidinate complex (Im<sup>Dipp</sup>N)(<sup>Xyket</sup>guan)TiCl<sub>2</sub> gives (η<sup>6</sup>-Im<sup>Dipp</sup>N)(<sup>xyket</sup>guan)Ti (1<sup>intra</sup>) and (Im<sup>Dipp</sup>N)(<sup>Xyket</sup>guan)Ti(η<sup>6</sup>-C<sub>6</sub>H<sub>6</sub>) (1<sup>inter</sup>) (<sup>xyket</sup>guan = [(<sup>t</sup>BuC=N)C(NXylyl)<sub>2</sub>]<sup>-</sup>, Xylyl = 2,5-dimethylphenyl) in the absence or presence of benzene, respectively. These complexes have been found to hydrogenate monocyclic and polycyclic arenes under relatively mild conditions (150 psi, 80 °C) – the first example of catalytic, homogeneous arene hydrogenation with TON > 1 by a Group IV system.</p>
Room temperature photolysis of the bis(azide)cobaltate(II) complex [Na(THF)<sub>x</sub>][(<sup>ket</sup>guan)Co(N3)2] (<sup>ket</sup>guan = [(tBu2CN)C(NDipp)2]–, Dipp = 2,6-diisopropylphenyl) (3a) in THF cleanly forms the binuclear cobalt nitride [Na(THF)4{[(<sup>ket</sup>guan)Co(N3)]2(μ-N)}]<sub>n</sub> (1). Compound 1 represents the first example of an isolable, bimetallic cobalt nitride complex, and it has been fully characterized by spectroscopic, magnetic, and computational analyses. Density functional theory supports a CoIII=N=CoIII canonical form with significant π-bonding between the cobalt centers and the nitride atom. Unlike other Group 9 bridging nitride complexes, no radical character is detected at the bridging N-atom of 1. Indeed, 1 is unreactive towards weak C-H donors and even co-crystallizes with a molecule of cyclohexadiene (CHD) in its crystallographic unit cell to give 1·CHD as a room temperature stable product. Notably, addition of pyridine to 1 or photolyzed solutions of [(<sup>ket</sup>guan)Co(N3)(py)]<sub>2</sub> (4a) leads to destabilization via activation of the nitride unit, resulting in the mixed-valent Co(II)/(III) bridged imido species [(<sup>ket</sup>guan)Co]2(μ-NH)(μ-N3) (5) formed from intermolecular hydrogen atom abstraction (HAA) of strong C-H bonds (BDE ~ 100 kcal/mol). Kinetic rate analysis of the formation of 5 in the presence of C6H12 or C6D12 gives a KIE = 2.5±0.1, supportive of a HAA formation path-way. The reactivity of our system was further probed by photolyzing C6D6/py-d5 solutions of 4a under an H2 atmosphere (150 psi), which leads to the exclusive formation of the bis(imido)[(<sup>ket</sup>guan)Co(μ-NH)]2 (6) as a result of dihydrogen activa-tion. These results provide unique insights into the chemistry and electronic structure of late 3d-metal nitrides while providing entryway into C-H activation pathways.
Room temperature photolysis of the bis(azide)cobaltate(II) complex [Na(THF)<sub>x</sub>][(<sup>ket</sup>guan)Co(N3)2] (<sup>ket</sup>guan = [(tBu2CN)C(NDipp)2]–, Dipp = 2,6-diisopropylphenyl) (3a) in THF cleanly forms the binuclear cobalt nitride [Na(THF)4{[(<sup>ket</sup>guan)Co(N3)]2(μ-N)}]<sub>n</sub> (1). Compound 1 represents the first example of an isolable, bimetallic cobalt nitride complex, and it has been fully characterized by spectroscopic, magnetic, and computational analyses. Density functional theory supports a CoIII=N=CoIII canonical form with significant π-bonding between the cobalt centers and the nitride atom. Unlike other Group 9 bridging nitride complexes, no radical character is detected at the bridging N-atom of 1. Indeed, 1 is unreactive towards weak C-H donors and even co-crystallizes with a molecule of cyclohexadiene (CHD) in its crystallographic unit cell to give 1·CHD as a room temperature stable product. Notably, addition of pyridine to 1 or photolyzed solutions of [(<sup>ket</sup>guan)Co(N3)(py)]<sub>2</sub> (4a) leads to destabilization via activation of the nitride unit, resulting in the mixed-valent Co(II)/(III) bridged imido species [(<sup>ket</sup>guan)Co]2(μ-NH)(μ-N3) (5) formed from intermolecular hydrogen atom abstraction (HAA) of strong C-H bonds (BDE ~ 100 kcal/mol). Kinetic rate analysis of the formation of 5 in the presence of C6H12 or C6D12 gives a KIE = 2.5±0.1, supportive of a HAA formation path-way. The reactivity of our system was further probed by photolyzing C6D6/py-d5 solutions of 4a under an H2 atmosphere (150 psi), which leads to the exclusive formation of the bis(imido)[(<sup>ket</sup>guan)Co(μ-NH)]2 (6) as a result of dihydrogen activa-tion. These results provide unique insights into the chemistry and electronic structure of late 3d-metal nitrides while providing entryway into C-H activation pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.