Mutations in BRCA1/2 increase the risk of developing breast and ovarian cancer. Germline BRCA1/2 mutations occur in 8.6-13.7% of unselected epithelial ovarian cancers, somatic mutations are also frequent. BRCA1/2 mutated or dysfunctional cells may be sensitive to PARP inhibition by synthetic lethality. The aim of this study is to comprehensively characterise the BRCA1/2 status of a large panel of ovarian cancer cell lines available to the research community to assist in biomarker studies of novel drugs and in particular of PARP inhibitors. The BRCA1/2 genes were sequenced in 41 ovarian cell lines, mRNA expression of BRCA1/2 and gene methylation status of BRCA1 was also examined. The cytotoxicity of PARP inhibitors olaparib and veliparib was examined in 20 cell lines. The cell line SNU-251 has a deleterious BRCA1 mutation at 5564G>A, and is the only deleterious BRCA1/2 mutant in the panel. Two cell lines (UPN-251 and PEO1) had deleterious mutations as well as additional reversion mutations that restored the protein functionality. Heterozygous mutations in BRCA1/2 were relatively common, found in 14.6% of cell lines. BRCA1 was methylated in two cell lines (OVCAR8, A1847) and there was a corresponding decrease in gene expression. The BRCA1 methylated cell lines were more sensitive to PARP inhibition than wild-type cells. The SNU-251 deleterious mutant was more sensitive to PARP inhibition, but only in a long-term exposure to correct for its slow growth rate. Cell lines derived from metastatic disease are significantly more resistant to veliparib (2.0 fold p = 0.03) compared to those derived from primary tumours. Resistance to olaparib and veliparib was correlated Pearsons-R 0.5393, p = 0.0311. The incidence of BRCA1/2 deleterious mutations 1/41 cell lines derived from 33 different patients (3.0%) is much lower than the population incidence. The reversion mutations and high frequency of heterozygous mutations suggest that there is a selective pressure against BRCA1/2 in cell culture similar to the selective pressure seen in the clinic after treatment with chemotherapy. PARP inhibitors may be useful in patients with BRCA1 deleterious mutations or gene methylation.
Previous studies suggest that ether-a-go-go related gene (ERG) KCNH2 potassium channels contribute to the control of motility patterns in the gastrointestinal tract of animal models. The present study examines whether these results can be translated into a role in human gastrointestinal muscles. Messages for two different variants of the KCNH2 gene were detected: KCNH2 V1 human ERG (HERG) (28) and KCNH2 V2 (HERG(USO)) (13). The amount of V2 message was greater than V1 in both human jejunum and brain. The base-pair sequence that gives rise to domains S3-S5 of the channel was identical to that previously published for human KCNH2 V1 and V2. KCNH2 protein was detected immunohistochemically in circular and longitudinal smooth muscle and enteric neurons but not in interstitial cells of Cajal. In the presence of TTX (10(-6) M), atropine (10(-6) M). and l-nitroarginine (10(-4) M) human jejunal circular muscle strips contracted phasically (9 cycles/min) and generated slow waves with superimposed spikes. Low concentrations of the KCNH2 blockers E-4031 (10(-8) M) and MK-499 (3 x 10(-8) M) increased phasic contractile amplitude and the number of spikes per slow wave. The highest concentration of E-4031 (10(-6) M) produced a 10-20 mV depolarization, eliminated slow waves, and replaced phasic contractions with a small tonic contracture. E-4031 (10(-6) M) did not affect [(14)C]ACh release from enteric neurons. We conclude that KCNH2 channels play a fundamental role in the control of motility patterns in human jejunum through their ability to modulate the electrical behavior of smooth muscle cells.
OBJECTIVEIn diabetes, β-cell mass is not static but in a constant process of cell death and renewal. Inactivating mutations in transcription factor 1 (tcf-1)/hepatocyte nuclear factor1a (hnf1a) result in decreased β-cell mass and HNF1A–maturity onset diabetes of the young (HNF1A-MODY). Here, we investigated the effect of a dominant-negative HNF1A mutant (DN-HNF1A) induced apoptosis on the regenerative capacity of INS-1 cells.RESEARCH DESIGN AND METHODSDN-HNF1A was expressed in INS-1 cells using a reverse tetracycline-dependent transactivator system. Gene(s)/protein(s) involved in β-cell regeneration were investigated by real-time quantitative RT-PCR, Western blotting, and immunohistochemistry. Pancreatic stone protein/regenerating protein (PSP/reg) serum levels in human subjects were detected by enzyme-linked immunosorbent assay.RESULTSWe detected a prominent induction of PSP/reg at the gene and protein level during DN-HNF1A–induced apoptosis. Elevated PSP/reg levels were also detected in islets of transgenic HNF1A-MODY mice and in the serum of HNF1A-MODY patients. The induction of PSP/reg was glucose dependent and mediated by caspase activation during apoptosis. Interestingly, the supernatant from DN-HNF1A–expressing cells, but not DN-HNF1A–expressing cells treated with zVAD.fmk, was sufficient to induce PSP/reg gene expression and increase cell proliferation in naïve, untreated INS-1 cells. Further experiments demonstrated that annexin-V–positive microparticles originating from apoptosing INS-1 cells mediated the induction of PSP/reg. Treatment with recombinant PSP/reg reversed the phenotype of DN-HNF1A–induced cells by stimulating cell proliferation and increasing insulin gene expression.CONCLUSIONSOur results suggest that apoptosing INS-1 cells shed microparticles that may stimulate PSP/reg induction in neighboring cells, a mechanism that may facilitate the recovery of β-cell mass in HNF1A-MODY.
The present study investigated the spatial organization of electrical activity in the canine rectoanal region and its relationship to motility patterns. Contraction and resting membrane potential (E m) were measured from strips of circular muscle isolated 0.5-8 cm from the anal verge. Rapid frequency [25 cycles/min (cpm)] E m oscillations (MPOs, 12 mV amplitude) were present across the thickness of the internal anal sphincter (IAS; 0.5 cm) and Em was constant (Ϫ52 mV). Between the IAS and the proximal rectum an 18 mV gradient in Em developed across the muscle thickness with the submucosal edge at Ϫ70 mV and MPOs were replaced with slow waves (20 mV amplitude, 6 cpm). Slow waves were of greatest amplitude at the submucosal edge. Nifedipine (1 M) abolished MPOs but not slow waves. Contractile frequency changes were commensurate with the changes in pacemaker frequency. Our results suggest that changing motility patterns in the rectoanal region are associated with differences in the characteristics of pacemaker potentials as well as differences in the sites from which these potentials emanate.interstitial cells of Cajal; smooth muscle; membrane potential; internal anal sphincter; rectum THE RECTOANAL REGION REPRESENTS the final site for controlling the storage, transport, and evacuation of gastrointestinal contents. The internal anal sphincter (IAS) is a thickening of the circular muscle layer at the distal end of the rectum. Under most circumstances, the IAS is closed and contributes to maintaining continence of fecal matter, liquids, and gases, whereas during the defecation reflex, it briefly relaxes to allow the passage of fecal matter. In contrast, although the rectum is generally empty, it can serve as a final site of storage before defecation as well as participating in the defecation reflex. The IAS and rectum are, therefore, anatomically linked but subserve different physiological roles (7,13,16,18). These functional differences are likely to be associated with significant differences in the motility patterns in the two regions as well as the mechanisms controlling this activity.Spontaneous phasic contractile activity in gastrointestinal smooth muscle is generally associated with pacemaker potentials of varying time course and amplitude. In recent years, there has been mounting evidence that this activity is generated by specialized cells referred to as interstitial cells of Cajal (ICC) (14). In the human and canine colonic circular muscle layer, for example, slow waves arise from a specific population of ICC located at the submucosal edge of the muscle layer, and these give rise to a characteristic 1-cpm (4) or 6-cpm contractile rhythm (17), respectively. In contrast, although the IAS exhibits spontaneous contractile activity (8), much less is known about the mechanisms underlying this activity or the role that ICC play in this process.The goal of the present study was to characterize pacemaker potentials of the canine rectoanal region over an 8-cm distance from distal IAS to proximal rectum and to correlat...
Endothelial cells express receptors for ATP and UTP, and both UTP and ATP elicit endothelial release of vasoactive compounds such as prostacyclin and nitric oxide; however, the distinction between purine and pyrimidine nucleotide signaling is not known. We hypothesized that UTP plays a more important role in endothelial mitogenesis and chemotaxis than does ATP and that UTP is angiogenic. In cultured endothelial cells from guinea pig cardiac vasculature (CEC), both UTP and vascular endothelial growth factor (VEGF) were significant mitogenic and chemotactic factors; in contrast, ATP demonstrated no significant chemotaxis in CEC. In chick chorioallantoic membranes (CAM), UTP and VEGF treatments produced statistically significant increases in CAM vascularity compared with controls. These findings are the first evidence of chemotactic or angiogenic effects of pyrimidines; they suggest a role for pyrimidine nucleotides that is distinct from those assumed by purine nucleotides and provide for the possibility that UTP serves as an extracellular signal for processes such as endothelial repair and angiogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.