Canine hemophilia A closely mimics the human disease and has been used previously in the development of factor VIII (FVIII) protein replacement products. FVIIIdeficient dogs were studied to evaluate an in vivo gene therapy approach using an E1/E2a/E3-deficient adenoviral vector encoding canine FVIII. Results demonstrated a high level of expression of the canine protein and complete phenotypic correction of the coagulation defect in all 4 treated animals. However, FVIII expression was short-term, lasting 5 to 10 days following vector infusion. All 4 dogs displayed a biphasic liver toxicity, a transient drop in platelets, and development of anticanine FVIII antibody. Canine FVIII inhibitor development was transient in 2 of the 4 treated animals. These data demonstrate that systemic delivery of attenuated adenoviral vectors resulted in liver toxicity and hematologic changes. Therefore, the development of further attenuated adenoviral vectors encoding canine FVIII will be required to improve vector safety and reduce the risk of immunologic sequelae, and may allow achievement of sustained phenotypic correction of canine hemophilia A. IntroductionHemophilia A is a severe, X-linked bleeding disorder caused by a deficiency of blood coagulation factor VIII (FVIII). Hemophilia A has an incidence approaching 1 in 4000 males in all populations, 1 and in its severe form, is a life-threatening, crippling disease. Infusion of plasma-derived or recombinant FVIII protein in response to bleeding crises is currently the most widely accepted therapy 1 and has dramatically increased the life expectancy and quality of life for many patients with hemophilia. However, the high cost and short supply of FVIII replacement products has resulted in their availability being limited to less than 10% of the world's hemophilic population.Gene therapy for hemophilia A would provide prophylactic expression of FVIII and correction of the coagulation defect. Considerable progress has been made recently in the development of adenoviral vector-mediated gene therapy for hemophilia A. 2,3 Potent adenoviral vectors encoding a human FVIII complementary DNA (cDNA) have been developed that mediated expression of physiologic levels of FVIII in mice, 4-7 monkeys, 8 and dogs, 9 and sustained human FVIII expression in normal 5 and hemophilic mice. 7 Treatment of hemophilic mice and dogs resulted in human FVIII expression and complete phenotypic correction, verifying the feasibility of adenoviral vector administration for the treatment of hemophilia A. 7,[9][10][11] Expression in the hemophilic mice was sustained for at least 1 year, 7,11 whereas the duration of expression in the hemophilic dogs was short-term, limited by a rapid antibody response to the human FVIII protein. 9 Canine hemophilia A was first described 50 years ago, 12,13 and FVIII-deficient dogs have been used to support the development of FVIII pharmaceutical products. [14][15][16][17][18][19] However, human FVIII is highly immunogenic in dogs when the protein is delivered intravenously 20 or v...
Hemophilia A is the most common severe hereditary coagulation disorder and is caused by a deficiency in blood clotting factor VIII (FVIII). Canine hemophilia A represents an excellent large animal model that closely mimicks the human disease. In previous studies, treatment of hemophiliac dogs with an adenoviral vector encoding human FVIII resulted in complete correction of the coagulation defect and high-level FVIII expression [Connelly et al. (1996). Blood 88, 3846]. However, FVIII expression was short term, limited by a strong antibody response directed against the human protein. Human FVIII is highly immunogenic in dogs, whereas the canine protein is significantly less immunogenic. Therefore, sustained phenotypic correction of canine hemophilia A may require the expression of the canine protein. In this work, we have isolated the canine FVIII cDNA and generated an adenoviral vector encoding canine FVIII. We demonstrate expression of canine FVIII in hemophiliac mice at levels 10-fold higher than those of the human protein expressed from an analogous vector. Canine FVIII expression was sustained above human therapeutic levels (50 mU/ml) for at least 1 year in hemophiliac mice.
SummaryAdenoviral vectors provide a promising gene therapy system for the treatment of hemophilia A. Potent vectors encoding a human factor VIII (FVIII) cDNA were developed that mediated sustained FVIII expression in normal and hemophiliac mice and complete phenotypic correction of the bleeding disorder in hemophiliac mice and dogs (Connelly and Kaleko, Haemophilia 1998; 4: 380-8). However, these studies utilized vectors encoding a truncated version of the human FVIII cDNA lacking the B-domain (BDD FVIII). In this work, an adenoviral vector encoding the human full-length (FL) FVIII cDNA was generated and characterized. While functional FL FVIII was secreted in vitro, expression of the FL protein was not detected in the plasma of vector-treated hemophiliac mice. Unexpectedly, the FL FVIII vector-treated animals demonstrated phenotypic correction of the bleeding defect as measured by a tail-clip survival study. FL FVIII protein was visualized in the mouse livers using human FVIII-specific immunohistochemical analyses. These data demonstrate that adenoviral vector-mediated in vivo expression of BDD FVIII is more efficient than that of the FL protein and that phenotypic correction can occur in the absence of detectable levels of FVIII.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.