This review gives a brief account of the main processes of lens development, including induction, morphogenesis, differentiation and growth. It describes what is known about the molecules and mechanisms that control and regulate these processes. Some of the recent progress made in understanding the molecular basis of lens development is highlighted along with some of the challenging areas for future research.
Spindle-shaped myofibroblast-like cells, which contain alpha-smooth muscle actin, have been described in anterior subcapsular cataract and after-cataract. In a previous study in this laboratory, it was shown that transforming growth factor-beta (TGF beta) induces the formation of spindle-shaped cells in lens epithelial explants. The aim of this investigation was to determine whether these TGF beta-induced spindle-shaped cells contain alpha-smooth muscle actin. Lens epithelial explants were prepared from 21-day-old rats and cultured with either TGF beta 1 or basic FGF alone, a combination of both growth factors, or without added growth factors. After three days, cellular changes were monitored by phase contrast microscopy, localisation of filamentous actin with rhodamine-phalloidin, and immunolocalisation and immunoblotting of alpha-smooth muscle actin. TGF beta induced rapid cell elongation and formation of characteristic spindle-shaped cells in lens epithelial explants in the presence or absence of FGF. These cells contained alpha-smooth muscle actin, a marker for myofibroblastic cells and a protein not normally found in the lens. The present study thus provides molecular evidence that TGF beta induces cataractous changes in lens epithelial cells. As TGF beta is potentially available to lens cells in situ throughout life, these findings are consistent with a key role for TGF beta in the aetiology of major forms of subcapsular cataract.
Cataract, already a major cause of visual impairment and blindness, is likely to become an increasing problem as the world population ages. In a previous study, we showed that transforming growth factor-β (TGFβ) induces rat lenses in culture to develop opacities and other changes that have many features of human subcapsular cataracts. Here we show that estrogen protects against cataract. Lenses from female rats are more resistant to TGFβ-induced cataract than those from males. Furthermore, lenses from ovariectomized females show increased sensitivity to the damaging effects of TGFβ and estrogen replacement in vivo, or exposure to estrogen in vitro, restores resistance. Sex-dependent and estrogen-related differences in susceptibility to cataract formation, consistent with a protective role for estrogen, have been noted in some epidemiological studies. The present study in the rat indicates that estrogen provides protection against cataract by countering the damaging effects of TGFβ. It also adds to an increasing body of evidence that hormone replacement therapy protects postmenopausal women against various diseases.
Cones in the foveola of adult primate retina are narrower and more elongated than cones on the foveal rim, which in turn, are narrower and more elongated than those located more eccentric. This gradient of cone morphology is directly correlated with cone density and acuity. Here we investigate the hypothesis that fibroblast growth factor (FGF) signaling mediates the morphological differentiation of foveal cones--in particular, the mechanism regulating the elongation of foveal cones. We used immunoreactivity to FGF receptor (R) 4, and quantitative analysis to study cone elongation on the horizontal meridian of macaque retinae, aged between foetal day (Fd) 95 and 2.5 years postnatal (P 2.5 y). We also used in situ hybridization and immunohistochemistry to investigate the expression patterns of FGF2 and FGFR1-4 at the developing fovea, and three other sample locations on the horizontal meridian. Labeled RNA was detected using the fluorescent marker "Fast Red" (Roche) and levels of expression in cone inner segments and in the ganglion cell layer (GCL) were compared using confocal microscopy, optical densitometry, and tested for statistical significance. Our results show that morphological differentiation of cones begins near the optic disc around Fd 95, progressing toward the developing fovea up until birth, approximately. Levels of FGF2 and FGFR4 mRNAs expression are low in foveal cones, compared with cones closer to the optic disc, during this period. There is no similar gradient of FGF2 mRNA expression in the ganglion cell layer of the same sections. Maturation of foveal cones is delayed until the postnatal period. The results suggest that a wave of cone differentiation spreads from the disc region toward the developing fovea during the second half of gestation in the macaque. A gradient of expression of FGFR4 and FGF2 associated with the wave of differentiation suggests that FGF signalling mediates cone narrowing and elongation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.