Intrinsic antioxidant defenses are important for neuronal longevity. We found that in rat neurons, synaptic activity, acting via NMDA receptor (NMDAR) signaling, boosted antioxidant defenses by making changes to the thioredoxin-peroxiredoxin (Prx) system. Synaptic activity enhanced thioredoxin activity, facilitated the reduction of overoxidized Prxs and promoted resistance to oxidative stress. Resistance was mediated by coordinated transcriptional changes; synaptic NMDAR activity inactivated a previously unknown Forkhead box O target gene, the thioredoxin inhibitor Txnip. Conversely, NMDAR blockade upregulated Txnip in vivo and in vitro, where it bound thioredoxin and promoted vulnerability to oxidative damage. Synaptic activity also upregulated the Prx reactivating genes Sesn2 (sestrin 2) and Srxn1 (sulfiredoxin), via C/EBPbeta and AP-1, respectively. Mimicking these expression changes was sufficient to strengthen antioxidant defenses. Trans-synaptic stimulation of synaptic NMDARs was crucial for boosting antioxidant defenses; chronic bath activation of all (synaptic and extrasynaptic) NMDARs induced no antioxidative effects. Thus, synaptic NMDAR activity may influence the progression of pathological processes associated with oxidative damage.
The hypomyelinating leukodystrophies X-linked Pelizaeus-Merzbacher disease (PMD) and Pelizaeus-Merzbacher-like disease (PMLD) are characterized by nystagmus, progressive spasticity, and ataxia. In a consanguineous family with PMLD, we performed a genomewide linkage scan using the GeneChip Mapping EA 10K Array (Affymetrix) and detected a single gene locus on chromosome 1q41-q42. This region harbors the GJA12 gene, which encodes gap junction protein alpha 12 (or connexin 46.6). Gap junction proteins assemble into intercellular channels through which signaling ions and small molecules are exchanged. GJA12 is highly expressed in oligodendrocytes, and, therefore, it serves as an excellent candidate for hypomyelination in PMLD. In three of six families with PMLD, we detected five different GJA12 mutations, including missense, nonsense, and frameshift mutations. We thereby confirm previous assumptions that PMLD is genetically heterogeneous. Although the murine Gja12 ortholog is not expressed in sciatic nerve, we did detect GJA12 transcripts in human sciatic and sural nerve tissue by reverse-transcriptase polymerase chain reaction. These results are in accordance with the electrophysiological finding of reduced motor and sensory nerve conduction velocities in patients with PMLD, which argues for a demyelinating neuropathy. In this study, we demonstrate that GJA12 plays a key role in central myelination and is involved in peripheral myelination in humans.
Microglia, the resident immune cells of the mammalian central nervous system (CNS), play a pivotal role in both physiological and pathological conditions such as the restoration of CNS integrity and the progression of neurodegenerative disorders. Extensive data have been published that describe neuroinflammation by microglial activation to have detrimental consequences on the developing and mature brain. On the other hand, a properly directed and limited inflammatory response is known to be a natural healing process after an insult in several other tissues. Thus, it is not surprising that research results illustrating benefits of neuroinflammation have been emerging over the past decade. Inflammation-mediated benefits for CNS outcomes include mechanisms such as neuroprotection, mobilization of neural precursors for repair, remyelination and axonal regeneration. Here, we review data that highlight the dual aspects of microglia with a focus on the developing brain, i.e. as aggressors potentiating damage and as helpers in the recovery process following CNS damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.