Oxaliplatin (Eloxatine) is a third-generation platinum compound which has shown a wide antitumour effect both in vitro and in vivo, a better safety profile than cisplatin and a lack of cross-resistance with cisplatin and carboplatin. In this scenario, oxaliplatin may represent an innovative and challenging drug extending the antitumour activity in diseases such as gastrointestinal cancer that are not usually sensitive to these coordination complexes. Oxaliplatin has a non-hydrolysable diaminocyclohexane (DACH) carrier ligand which is maintained in the final cytotoxic metabolites of the drug. Like cisplatin, oxaliplatin targets DNA producing mainly 1,2-GG intrastrand cross-links. The cellular and molecular aspects of the mechanism of action of oxaliplatin have not yet been fully elucidated. However, the intrinsic chemical and steric characteristics of the DACH-platinum adducts appear to contribute to the lack of cross-resistance with cisplatin. To date, mismatch repair and replicative bypass appear to be the processes most likely involved in differentiating the molecular responses to these agents.
Using single nucleotide polymorphic (SNP) allele arrays, we analyzed 28 pediatric gliomas consisting of 14 high-grade gliomas and 14 low-grade gliomas. Most of the low-grade gliomas had no detectable loss of heterozygosity (LOH) in any of the 11,562 SNP loci; exceptions were two gangliogliomas (3q and 9p), one astrocytoma (6q), and two subependymal giant cell astrocytomas (16p and 21q). On the other hand, all high-grade gliomas had various degrees of LOH affecting 52 to 2,168 SNP loci on various chromosomes. LOH occurred most frequently in regions located at 4q (54%), 6q (46%), 9p (38%), 10q (38%), 11p (38%), 12 (38%), 13q (69%), 14q (54%), 17 (38%), 18p (46%), and 19q (38%). We also detected amplifications of epidermal growth factor receptor (EGFR) or platelet-derived growth factor receptor a (PDGFRa) in a few of the 13 cases of glioblastoma multiforme analyzed. Interestingly, the amplified EGFR and PDGFRa were located within regions of LOH. SNP loci with LOH and copy number changes were validated by sequencing and quantitative PCR, respectively. Our results indicate that, in some pediatric glioblastoma multiforme, one allele each of EGFR and PDGFRa was lost but the remaining allele was amplified. This may represent a new molecular mechanism underlying tumor progression.
Retinoid-related molecules (RRM) are novel agents with tumor-selective cytotoxic/antiproliferative activity, a different mechanism of action from classic retinoids and no cross-resistance with other chemotherapeutics. ST1926 and CD437 are prototypic RRMs, with the former currently undergoing phase I clinical trials. We show here that ST1926, CD437, and active congeners cause DNA damage. Cellular and subcellular COMET assays, H2AX phosphorylation (;-H2AX), and scoring of chromosome aberrations indicate that active RRMs produce DNA double-strand breaks (DSB) and chromosomal lesions in NB4, an acute myeloid leukemia (AML) cell line characterized by high sensitivity to RRMs. There is a direct quantitative correlation between the levels of DSBs and the cytotoxic/antiproliferative effects induced by RRMs. NB4.437r blasts, which are selectively resistant to RRMs, do not show any sign of DNA damage after treatment with ST1926, CD437, and analogues. DNA damage is the major mechanism underlying the antileukemic activity of RRMs in NB4 and other AML cell lines. In accordance with the S-phase specificity of the cytotoxic and antiproliferative responses of AML cells to RRMs, increases in DSBs are maximal during the S phase of the cell cycle. Induction of DSBs precedes inhibition of DNA replication and is associated with rapid activation of ataxia telangectasia mutated, ataxia telangectasia RAD3-related, and DNAdependent protein kinases with subsequent stimulation of the p38 mitogen-activated protein kinase. Inhibition of ataxia telangectasia mutated and DNA-dependent protein kinases reduces phosphorylation of H2AX. Cells defective for homologous recombination are particularly sensitive to ST1926, indicating that this process is important for the protection of cells from the RRM-dependent DNA damage and cytotoxicity. [Mol Cancer Ther 2008;7(9):2941 -54]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.