This retrospective controlled clinical study aimed to verify if intensive neurorehabilitation (INR) could improve ambulation faster than spontaneous recovery or conventional physiotherapy and provide a possible therapeutic approach in post-surgical paraplegic deep pain perception-positive (DPP+) (with absent/decreased flexor reflex) and DPP-negative (DDP−) dogs, with acute intervertebral disc extrusion. A large cohort of T10-L3 Spinal Cord Injury (SCI) dogs (n = 367) were divided into a study group (SG) (n = 262) and a control group (CG) (n = 105). The SG was based on prospective clinical cases, and the CG was created by retrospective medical records. All SG dogs performed an INR protocol by the hospitalization regime based on locomotor training, electrical stimulation, and, for DPP−, a combination with pharmacological management. All were monitored throughout the process, and measuring the outcome for DPP+ was performed by OFS and, for the DPP−, by the new Functional Neurorehabilitation Scale (FNRS-DPP−). In the SG, DPP+ dogs had an ambulation rate of 99.4% (n = 167) and, in DPP−, of 58.5% (n = 55). Moreover, in DPP+, there was a strong statistically significant difference between groups regarding ambulation (p < 0.001). The same significant difference was verified in the DPP– dogs (p = 0.007). Furthermore, a tendency toward a significant statistical difference (p = 0.058) regarding DPP recovery was demonstrated between groups. Of the 59 dogs that did not recover DPP, 22 dogs achieved spinal reflex locomotion (SRL), 37.2% within a maximum of 3 months. The progressive myelomalacia cases were 14.9% (14/94). Therefore, although it is difficult to assess the contribution of INR for recovery, the results suggested that ambulation success may be improved, mainly regarding time.
In human medicine there was no evidence registered of a significant difference in recovery between body weight-supported treadmill training (BWSTT) and conventional over-ground (COGI). There isn't any similar study in veterinary medicine. Thus, this study aimed to compare the locomotor recovery obtained in incomplete SCI (T11–L3 Hansen type I) post-surgical dogs following BWSTT or COGI protocols, describing their evolution during 7 weeks in regard to OFS classifications. At admission, dogs were blindly randomized in two groups but all were subjected to the same protocol (underwater treadmill training) for the first 2 weeks. After, they were divided in the BWSTT group (n = 10) and the COGI group (n = 10) for the next 2 weeks, where they performed different training. In both groups locomotor training was accompanied by functional electrical stimulation (FES) protocols. Results reported statistically significant differences between all OFS evaluations time-points (p < 0.001) and between the two groups (p < 0.001). In particular with focus on T1 to T3 a two-way repeated measures ANOVA was performed and similar results were obtained (p = 0.007). Functional recovery was achieved in 90% (17/19) of all dogs and 100% recovered bladder function. The BWSTT group showed 100% (10/10) recovery within a mean time of 4.6 weeks, while the COGI group had 78% (7/9) within 6.1 weeks. Therefore, BWSTT leads to a faster recovery with a better outcome in general.
This case series study aimed to evaluate the safety, feasibility, and positive outcome of the neurorehabilitation multimodal protocol (NRMP) in 16 chronic post-surgical IVDD Hansen type I dogs, with OFS 0/DPP− (n = 9) and OFS 1/DPP+ (n = 7). All were enrolled in the NRMP for a maximum of 90 days and were clinically discharged after achieving ambulation. The NRMP was based on locomotor training, functional electrical stimulation, transcutaneous electrical spinal cord stimulation, and 4-aminopyridine (4-AP) pharmacological management. In the Deep Pain Perception (DPP)+ dogs, 100% recovered ambulation within a mean period of 47 days, reaching OFS ≥11, which suggests that a longer period of time is needed for recovery. At follow-up, all dogs presented a positive evolution with voluntary micturition. Of the DPP− dogs admitted, all achieved a flexion/extension locomotor pattern within 30 days, and after starting the 4-AP, two dogs were discharged at outcome day 45, with 78% obtaining Spinal Reflex Locomotion (SRL) and automatic micturition within a mean period of 62 days. At follow-up, all dogs maintained their neurological status. After the NRMP, ambulatory status was achieved in 88% (14/16) of dogs, without concurrent events. Thus, an NRMP may be an important therapeutic option to reduce the need for euthanasia in the clinical setting.
Domestic animals with severe spontaneous spinal cord injury (SCI), including dogs and cats that are deep pain perception negative (DPP−), can benefit from specific evaluations involving neurorehabilitation integrative protocols. In human medicine, patients without deep pain sensation, classified as grade A on the American Spinal Injury Association (ASIA) impairment scale, can recover after multidisciplinary approaches that include rehabilitation modalities, such as functional electrical stimulation (FES), transcutaneous electrical spinal cord stimulation (TESCS) and transcranial direct current stimulation (TDCS). This review intends to explore the history, biophysics, neurophysiology, neuroanatomy and the parameters of FES, TESCS, and TDCS, as safe and noninvasive rehabilitation modalities applied in the veterinary field. Additional studies need to be conducted in clinical settings to successfully implement these guidelines in dogs and cats.
Background: Osteoarthritis (OA) is a major cause of chronic pain and lameness in dogs. Platelet-rich plasma (PRP) is a concentrate of growth and differentiation factors from the blood, which can be used in regenerative medicine strategies. Aim: The main aim of this study was to evaluate the effect of allogeneic PRP on the treatment of canine OA. Methods: Five dogs from several breeds, between 6 and 12 years old, and from both genders were studied. Clinical and imageological examinations diagnosed OA in the knee, tibiotarsal, elbow, and intercarpal joints. These dogs were refractory to medical therapy and to physical rehabilitation protocols that included shockwave therapy, laser therapy, electrostimulation, hydrotherapy, and diathermy. Animals were treated with allogeneic PRP obtained from the blood of the five dogs, which was processed in a pool. Echoguided intra-articular PRP injection was administered under sedation and after aseptic field preparation. Lameness at walk and trot (five grades) and pain (five scores) were evaluated before treatment and 30, 60, and 90 days post-treatment. Results: All animals presented improvements at 30 and 60 days in both parameters. Four dogs showed a decrease of three grades of lameness after 90 days and there was complete absence of lameness in 2 days. Pain was reduced from severe and moderate to mild in all the dogs after 30 days, and among them, three revealed no pain after 90 days. Conclusion: This study sheds light on the applicability and safety of a single administration of allogeneic PRP in osteoarthritic dogs. Keywords: Dog, Lameness, Osteoarthritis, Pain, Platelet-rich plasma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.