The effect of several desilication experimental parameters (base concentration, temperature and time) on the characteristics of MOR zeolite was studied. The samples were characterized by X-ray diffraction, Al-27 and Si-29 MAS-NMR, chemical analysis, and FTIR (framework vibration region). The textural characterization was made by N-2 adsorption and the acidity was evaluated by pyridine adsorption followed by FTIR and by the catalytic model reaction of n-heptane cracking. The alkaline treatments promoted the Si extraction from the zeolite framework, without considerable loss of crystallinity and, as it was envisaged, an important increase of the mesoporous structure was attained. A linear correlation between the number of framework Si per unit cell. N-Si and the asymmetric stretching wavenumber, nu(i), was observed. The acidity characterization shows that the desilicated samples exhibit practically the same acid properties than the parent HMOR zeolite. The optimum desilication conditions were those used to obtain sample M/0.2/85/2, i.e., sample treated with 0.2 M NaOH solution at 85 degrees C for 2 h. (C) 2010 Elsevier Inc. All rights reserved.
Abstract:The hydrotris(pyrazol-1-yl)methane iron(II) complex [FeCl2{eta(3)-HC(pz)(3)}] (Fe, pz = pyrazol-1-yl) immobilized on commercial (MOR) or desilicated (MOR-D) zeolite, catalyses the oxidation of cyclohexane with hydrogen peroxide to cyclohexanol and cyclohexanone, under mild conditions. MOR-D/Fe (desilicated zeolite supported [FeCl2{eta(3)-HC(pz)(3)}] complex) provides an outstanding catalytic activity (TON up to 2.90 x 10(3)) with the concomitant overall yield of 38%, and can be easy recovered and reused. The MOR or MOR-D supported hydrotris(pyrazol-1-yl)methane iron(II) complex (MOR/Fe and MOR-D/Fe, respectively) was characterized by X-ray powder diffraction, ICP-AES, and TEM studies as well as by IR spectroscopy and N-2 adsorption at -196 degrees C. The catalytic operational conditions (e.g., reaction time, type and amount of oxidant, presence of acid and type of solvent) were optimized. (C) 2013 Elsevier B.V. All rights reserved.
In this study, an adsorption experiment
is proposed using commercial
activated carbon as adsorbent and a textile azo dye, Mordant Blue-9,
as adsorbate. The surface chemistry of the activated carbon is changed
through a simple oxidation treatment and the ionic strength of the
dye solution is also modified, simulating distinct conditions of water
hardness. The purpose of this experimental work, directed to undergraduate
(second-year) students is to allow them to understand the influence
of surface chemistry and ionic strength on the interaction between
the carbon surface and the dye molecule.
MOR zeolites were modified via desilication treatments with NaOH, under conventional and microwave heating. The samples were characterized by powder X-ray diffraction, (27)Al and (29)Si NMR spectroscopy. TEM and N(2) adsorption at -196 degrees C. The acidity of the samples and the space available inside the pores were evaluated through a catalytic model reaction, the isomerization of mxylene, for which the profiles of the coke thermal decomposition were also analyzed. Powder X-ray diffraction and (29)Si and (27)Al MNR results show that in comparison with conventional heating, microwave irradiation (a less time consuming process) leads to identical amount of Si extraction from the zeolite framework. With this treatment. in addition to the customary mesopores development promoted by conventional heating, a partial conversion of the zeolite microporosity into larger micropores, is observed. The microwave irradiated and conventionally heated samples show different catalytic behavior in the m-xylene isomerization model reaction. It was observed that, by controlling the experimental conditions, it is possible to obtain samples with catalytic properties closer to the parent material, which is also confirmed by the respective coke analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.