OBJECTIVEPolymorphisms in the human TCF7L2 gene are associated with reduced insulin secretion and an increased risk of type 2 diabetes. However, the mechanisms by which TCF7L2 affect insulin secretion are still unclear. We define the effects of TCF7L2 expression level on mature β-cell function and suggest a potential mechanism for its actions.RESEARCH DESIGN AND METHODSTCF7L2 expression in rodent islets and β-cell lines was altered using RNAi or adenoviral transduction. β-Cell gene profiles were measured by quantitative real-time PCR and the effects on intracellular signaling and exocytosis by live cell imaging, electron microscopy, and patch clamp electrophysiology.RESULTSReducing TCF7L2 expression levels by RNAi decreased glucose- but not KCl-induced insulin secretion. The glucose-induced increments in both ATP/ADP ratio and cytosolic free Ca2+ concentration ([Ca2+]i) were increased compared with controls. Overexpression of TCF7L2 exerted minor inhibitory effects on glucose-regulated changes in [Ca2+]i and insulin release. Gene expression profiling in TCF7L2-silenced cells revealed increased levels of mRNA encoding syntaxin 1A but decreased Munc18–1 and ZnT8 mRNA. Whereas the number of morphologically docked vesicles was unchanged by TCF7L2 suppression, secretory granule movement increased and capacitance changes decreased, indicative of defective vesicle fusion.CONCLUSION—TCF7L2 is involved in maintaining expression of β-cell genes regulating secretory granule fusion. Defective insulin exocytosis may thus underlie increased diabetes incidence in carriers of the at-risk TCF7L2 alleles.
Summary The advent of reprogramming and its impact on stem cell biology has renewed interest in lineage restriction in mammalian embryos, the source of embryonic (ES), epiblast (EpiSC), trophoblast (TS), and extraembryonic endoderm (XEN) stem cell lineages. Isolation of specific cell types during stem cell differentiation and reprogramming, and also directly from embryos, is a major technical challenge because few cell-surface proteins are known that can distinguish each cell type. We provide a large-scale proteomic resource of cell-surface proteins for the four embryo-derived stem cell lines. We validated 27 antibodies against lineage-specific cell-surface markers, which enabled investigation of specific cell populations during ES-EpiSC reprogramming and ES-to-XEN differentiation. Identified markers also allowed prospective isolation and characterization of viable lineage progenitors from blastocysts by flow cytometry. These results provide a comprehensive stem cell proteomic resource and enable new approaches to interrogate the mechanisms that regulate cell fate specification.
Aims/Hypothesis AMP-activated protein kinase (AMPK) is an evolutionarily-conserved enzyme and a target of antihyperglycemic agents including metformin. However, the precise role(s) of the enzyme in controlling insulin secretion remains uncertain. Methods The catalytic α1 and α2 subunits of AMPK were ablated selectively in pancreatic beta cells and hypothalamic neurons by breeding AMPKα1 null mice, bearing flox’d AMPKα2 alleles, with animals expressing Cre recombinase under the rat insulin promoter. The latter promoter was used to express constitutively-activated AMPK selectively in beta cells in transgenic mice. Food intake, body weight and urinary catecholamines were measured using metabolic cages. Glucose and insulin tolerance were determined after intraperitoneal injection. Beta cell mass and morphology were analysed by optical projection tomography and confocal immunofluorescence microscopy, respectively. Granule docking, insulin secretion, membrane potential, and intracellular free Ca2+ were measured with standard techniques. Results Trigenic βAMPKdKO mice, lacking both AMPK α subunits in the beta cell, displayed normal body weight and increased insulin sensitivity, but were profoundly insulin deficient. Secreted catecholamine levels were unchanged. Total beta cell mass was unaltered whilst mean islet and beta cell volume were reduced. AMPK-deficient beta cells displayed normal glucose-induced changes in membrane potential and intracellular free Ca2+ whilst granule docking and insulin secretion were enhanced. Conversely, βAMPK transgenic mice were glucose-intolerant and displayed defective insulin secretion. Conclusions/Interpretation Inhibition of AMPK activity within the beta cell is necessary, but not sufficient, for the stimulation of insulin secretion by glucose. AMPK activation in extrapancreatic RIP.Cre-expressing cells might also influence insulin secretion in vivo
The tumor suppressor liver kinase B1 (LKB1), also called STK11, is a protein kinase mutated in Peutz-Jeghers syndrome. LKB1 phosphorylates AMP-activated protein kinase (AMPK) and several related protein kinases. Whereas deletion of both catalytic isoforms of AMPK from the pancreatic β-cell and hypothalamic neurons using the rat insulin promoter (RIP2).Cre transgene (βAMPKdKO) diminishes insulin secretion in vivo, deletion of LKB1 in the β-cell with an inducible Pdx-1.CreER transgene enhances insulin secretion in mice. To determine whether the differences between these models reflect genuinely distinct roles for the two kinases in the β-cell or simply differences in the timing and site(s) of deletion, we have therefore created mice deleted for LKB1 with the RIP2.Cre transgene. In marked contrast to βAMPKdKO mice, βLKB1KO mice showed diminished food intake and weight gain, enhanced insulin secretion, unchanged insulin sensitivity, and improved glucose tolerance. In line with the phenotype of Pdx1-CreER mice, total β-cell mass and the size of individual islets and β-cells were increased and islet architecture was markedly altered in βLKB1KO islets. Signaling by mammalian target of rapamycin (mTOR) to eIF4-binding protein-1 and ribosomal S6 kinase was also enhanced. In contrast to Pdx1-CreER-mediated deletion, the expression of Glut2, glucose-induced changes in membrane potential and intracellular Ca2+ were sharply reduced in βLKB1KO mouse islets and the stimulation of insulin secretion was modestly inhibited. We conclude that LKB1 and AMPK play distinct roles in the control of insulin secretion and that the timing of LKB1 deletion, and/or its loss from extrapancreatic sites, influences the final impact on β-cell function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.