• Premise of the study: Hyb-Seq, the combination of target enrichment and genome skimming, allows simultaneous data collection for low-copy nuclear genes and high-copy genomic targets for plant systematics and evolution studies.• Methods and Results: Genome and transcriptome assemblies for milkweed (Asclepias syriaca) were used to design enrichment probes for 3385 exons from 768 genes (>1.6 Mbp) followed by Illumina sequencing of enriched libraries. Hyb-Seq of 12 individuals (10 Asclepias species and two related genera) resulted in at least partial assembly of 92.6% of exons and 99.7% of genes and an average assembly length >2 Mbp. Importantly, complete plastomes and nuclear ribosomal DNA cistrons were assembled using off-target reads. Phylogenomic analyses demonstrated signal conflict between genomes.• Conclusions: The Hyb-Seq approach enables targeted sequencing of thousands of low-copy nuclear exons and flanking regions, as well as genome skimming of high-copy repeats and organellar genomes, to efficiently produce genome-scale data sets for phylogenomics.
Increased sampling and selection of best-fitting models of evolution provide more resolved and robust estimates of phylogeny and character evolution than obtained in previous studies. Evolutionary inferences are sensitive to choice of phylogenetic frameworks and models.
Bacteriophages (phages) infect many bacterial species, but little is known about the diversity of phages among the pneumococcus, a leading global pathogen. The objectives of this study were to determine the prevalence, diversity and molecular epidemiology of prophages (phage DNA integrated within the bacterial genome) among pneumococci isolated over the past 90 years. Nearly 500 pneumococcal genomes were investigated and RNA sequencing was used to explore prophage gene expression. We revealed that every pneumococcal genome contained prophage DNA. 286 full-length/putatively full-length pneumococcal prophages were identified, of which 163 have not previously been reported. Full-length prophages clustered into four major groups and every group dated from the 1930–40 s onward. There was limited evidence for genes shared between prophage clusters. Prophages typically integrated in one of five different sites within the pneumococcal genome. 72% of prophages possessed the virulence genes pblA and/or pblB. Individual prophages and the host pneumococcal genetic lineage were strongly associated and some prophages persisted for many decades. RNA sequencing provided clear evidence of prophage gene expression. Overall, pneumococcal prophages were highly prevalent, demonstrated a structured population, possessed genes associated with virulence, and were expressed under experimental conditions. Pneumococcal prophages are likely to play a more important role in pneumococcal biology and evolution than previously recognised.
Premise: Evolutionary studies require solid phylogenetic frameworks, but increased volumes of phylogenomic data have revealed incongruent topologies among gene trees in many organisms both between and within genomes. Some of these incongruences indicate polytomies that may remain impossible to resolve. Here we investigate the degree of gene-tree discordance in Solanum, one of the largest flowering plant genera that includes the cultivated potato, tomato, and eggplant, as well as 24 minor crop plants. Methods: A densely sampled species-level phylogeny of Solanum is built using unpublished and publicly available Sanger sequences comprising 60% of all accepted species (742 spp.) and nine regions (ITS, waxy, and seven plastid markers). The robustness of this topology is tested by examining a full plastome dataset with 140 species and a nuclear target-capture dataset with 39 species of Solanum (Angiosperms353 probe set).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.