The cotton genus (Gossypium ) includes approximately 50 species distributed in arid to semi-arid regions of the tropic and subtropics. Included are four species that have independently been domesticated for their fiber, two each in Africa-Asia and the Americas. Gossypium species exhibit extraordinary morphological variation, ranging from herbaceous perennials to small trees with a diverse array of reproductive and vegetative characteristics. A parallel level of cytogenetic and genomic diversity has arisen during the global radiation of the genus, leading to the evolution of eight groups of diploid (n ¼ 13) species (genome groups A-G, and K). The evolutionary history of the genus included multiple episodes of trans-oceanic dispersal, invasion of new ecological niches, and a surprisingly high frequency of natural interspecific hybridization among lineages that are presently both geographically isolated and intersterile. Recent investigations have clarified many aspects of this history, including relationships within and among the eight genome groups, the domestication history of each of the four cultivated species, and the origin of the allopolyploid cottons. Data implicate an origin for Gossypium 5-15 million years ago (mya) and a rapid early diversification of the major genome groups. Allopolyploid cottons appear to have arisen within the last million years, as a consequence of trans-oceanic dispersal of an A-genome taxon to the New World followed by hybridization with an indigenous D-genome diploid. Subsequent to formation, allopolyploids radiated into three modern lineages, including those containing the commercially important species G. hirsutum and G. barbadense. Genome doubling has led to an array of molecular genetic interactions, including inter-locus concerted evolution, differential rates of genomic evolution, inter-genomic genetic transfer, and probable alterations in gene expression. The myriad underlying mechanisms are also suggested to have contributed to both ecological success and agronomic potential.
Most eukaryotes have genomes that exhibit high levels of gene redundancy, much of which seems to have arisen from one or more cycles of genome doubling. Polyploidy has been particularly prominent during flowering plant evolution, yielding duplicated genes (homoeologs) whose expression may be retained or lost either as an immediate consequence of polyploidization or on an evolutionary timescale. Expression of 40 homoeologous gene pairs was assayed by cDNA-single-stranded conformation polymorphism in natural (1-to 2-million-yr-old) and synthetic tetraploid cotton (Gossypium) to determine whether homoeologous gene pairs are expressed at equal levels after polyploid formation. Silencing or unequal expression of one homoeolog was documented for 10 of 40 genes examined in ovules of Gossypium hirsutum. Assays of homoeolog expression in 10 organs revealed variable expression levels and silencing, depending on the gene and organ examined. Remarkably, silencing and biased expression of some gene pairs are reciprocal and developmentally regulated, with one homoeolog showing silencing in some organs and the other being silenced in other organs, suggesting rapid subfunctionalization. Duplicate gene expression was examined in additional natural polyploids to characterize the pace at which expression alteration evolves. Analysis of a synthetic tetraploid revealed homoeolog expression and silencing patterns that sometimes mirrored those of the natural tetraploid. Both long-term and immediate responses to polyploidization were implicated. Data suggest that some silencing events are epigenetically induced during the allopolyploidization process.
Adoption of NGS will facilitate progress in plant systematics, as whole plastome and rDNA cistrons, partial mitochondrial genomes, and low-copy nuclear markers can now be efficiently obtained for molecular phylogenetics studies.
BackgroundMolecular evolutionary studies share the common goal of elucidating historical relationships, and the common challenge of adequately sampling taxa and characters. Particularly at low taxonomic levels, recent divergence, rapid radiations, and conservative genome evolution yield limited sequence variation, and dense taxon sampling is often desirable. Recent advances in massively parallel sequencing make it possible to rapidly obtain large amounts of sequence data, and multiplexing makes extensive sampling of megabase sequences feasible. Is it possible to efficiently apply massively parallel sequencing to increase phylogenetic resolution at low taxonomic levels?ResultsWe reconstruct the infrageneric phylogeny of Pinus from 37 nearly-complete chloroplast genomes (average 109 kilobases each of an approximately 120 kilobase genome) generated using multiplexed massively parallel sequencing. 30/33 ingroup nodes resolved with ≥ 95% bootstrap support; this is a substantial improvement relative to prior studies, and shows massively parallel sequencing-based strategies can produce sufficient high quality sequence to reach support levels originally proposed for the phylogenetic bootstrap. Resampling simulations show that at least the entire plastome is necessary to fully resolve Pinus, particularly in rapidly radiating clades. Meta-analysis of 99 published infrageneric phylogenies shows that whole plastome analysis should provide similar gains across a range of plant genera. A disproportionate amount of phylogenetic information resides in two loci (ycf1, ycf2), highlighting their unusual evolutionary properties.ConclusionPlastome sequencing is now an efficient option for increasing phylogenetic resolution at lower taxonomic levels in plant phylogenetic and population genetic analyses. With continuing improvements in sequencing capacity, the strategies herein should revolutionize efforts requiring dense taxon and character sampling, such as phylogeographic analyses and species-level DNA barcoding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.