The sequence of the full-length gene encoding for the main capsid protein VP2 of 58 canine parvovirus (CPV) type 2c strains, along with recent CPV-2a/2b strains, was determined and analysed in comparison with reference CPV isolates. The CPV-2c strains displayed a low genetic variability and shared amino acid changes already detected in recent CPV-2a/2b isolates, with a phylogenetic clustering accounting for their geographical distribution. Analysis of the selection pressure driving CPV evolution confirmed that the VP2 gene is under purifying selection. The emergence and global spread of the new CPV variant provides an interesting model to better understand virus evolution.
Thirty-nine parvovirus strains contained in faecal samples collected in Italy (n534) and UK (n55) from cats with feline panleukopenia were characterized at the molecular level. All viruses were proven to be true feline panleukopenia virus (FPLV) strains by a minor groove binder probe assay, which is able to discriminate between FPLV and the closely related canine parvovirus type 2. By using sequence analysis of the VP2 gene, it was found that the FPLV strains detected in Italy and UK were highly related to each other, with a nucleotide identity of 99.1-100 and 99.4-99.8 % among Italian and British strains, respectively, whereas the similarities between all the sequences analysed were 98.6-100 %. Eighty-eight variable positions were detected in the VP2 gene of the field and reference FPLV strains, most of which were singletons. Synonymous substitutions (n557) predominated over non-synonymous substitutions (n531), and the ratio between synonymous and non-synonymous substitutions (dN/dS) was 0.10, thus confirming that evolution of FPLV is driven by random genetic drift rather than by positive selection pressure. Some amino acid mutations in the VP2 protein affected sites that are thought to be responsible for antigenic and biological properties of the virus, but no clear patterns of segregation and genetic markers, were identified, confirming that FPLV is in evolutionary stasis.
. MLST revealed lineages that were common between milk and bovine feces but distinct between cattle and pigeons. In one herd, C. jejuni with the same genotype was isolated repeatedly from bulk milk and a cow with an udder infection. Our results showed a high prevalence of C. jejuni in bulk milk and suggested that udder excretion, in addition to fecal matter, may be a route of bulk milk contamination. MLST analysis indicated that pigeons are probably not relevant for the transmission of C. jejuni to cattle and for milk contamination.
Historically, genome-wide and molecular characterization of the genus Listeria has concentrated on the important human pathogen Listeria monocytogenes and a small number of closely related species, together termed Listeria sensu strictu. More recently, a number of genome sequences for more basal, and nonpathogenic, members of the Listeria genus have become available, facilitating a wider perspective on the evolution of pathogenicity and genome level evolutionary dynamics within the entire genus (termed Listeria sensu lato). Here, we have sequenced the genomes of additional Listeria fleischmannii and Listeria newyorkensis isolates and explored the dynamics of genome evolution in Listeria sensu lato. Our analyses suggest that acquisition of genetic material through gene duplication and divergence as well as through lateral gene transfer (mostly from outside Listeria) is widespread throughout the genus. Novel genetic material is apparently subject to rapid turnover. Multiple lines of evidence point to significant differences in evolutionary dynamics between the most basal Listeria subclade and all other congeners, including both sensu strictu and other sensu lato isolates. Strikingly, these differences are likely attributable to stochastic, population-level processes and contribute to observed variation in genome size across the genus. Notably, our analyses indicate that the common ancestor of Listeria sensu lato lacked flagella, which were acquired by lateral gene transfer by a common ancestor of Listeria grayi and Listeria sensu strictu, whereas a recently functionally characterized pathogenicity island, responsible for the capacity to produce cobalamin and utilize ethanolamine/propane-2-diol, was acquired in an ancestor of Listeria sensu strictu.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.