Background: The neural organization of locomotion involves motor patterns generated by spinal interneuronal networks and supraspinal structures, which are approachable by noninvasive stimulation techniques. Recent evidences supported the hypothesis that transcranial direct current stimulation (combined with transcutaneous spinal direct current stimulation) may actually enhance the effects of robot-assisted gait training in chronic stroke patients. The cerebellum has many connections to interact with neocortical areas and may provide some peculiar plasticity mechanisms. So, it has been proposed as “non-lesioned entry” to the motor or cognitive system for the application of noninvasive stimulation techniques in patients with supratentorial stroke. Objective: To compare the effects of two different protocols of cerebellar transcranial direct current stimulation combined with transcutaneous spinal direct current stimulation on robotic gait training in patients with chronic supratentorial stroke. Methods: Forty patients with chronic supratentorial stroke were randomly assigned into two groups. All patients received ten, 20-minute robotic gait training sessions, five days a week, for two consecutive weeks. Group 1 underwent cathodal transcranial direct current stimulation over the contralesional cerebellar hemisphere + cathodal transcutaneous spinal direct current stimulation in combination with robotic training. Group 2 underwent cathodal transcranial direct current stimulation over the ipsilesional cerebellar hemisphere + cathodal transcutaneous spinal direct current stimulation in combination with robotic training. The primary outcome was the 6-minute walk test performed before, after, and at follow-up at 2 and 4 weeks post-treatment. Results: No significant difference in the 6-minute walk test between groups was found at the first post-treatment evaluation ( P = 0.976), as well as at the 2-week ( P = 0.178) and the 4-week ( P = 0.069) follow-up evaluations. Both groups showed significant within-group improvements in the 6-minute walk test at all time points.∥Conclusions: Our findings support the hypothesis that cathodal transcranial direct current stimulation over the contralesional or ipsilesional cerebellar hemisphere in combination with cathodal transcutaneous spinal direct current stimulation may lead to similar effects on robotic gait training in chronic supratentorial stroke patients.
BACKGROUND: Backward walking is recommended to improve the components of physiological gait in neurological disease. Botulinum toxin type A is an effective safe first line-treatment for post-stroke spasticity. OBJECTIVE: To compare the effects of backward treadmill training (BTT) versus standard forward treadmill training (FTT) on motor impairment in patients with chronic stroke receiving botulinum toxin type A therapy. METHODS: Eighteen chronic stroke patients were randomly assigned to receive BTT (n = 7) or FTT (n = 11) as adjunct to botulinum toxin type A therapy. A total of twelve 40-minute sessions (3 sessions/week for 4 weeks) of either BTT or FTT were conducted. A blinded assessor evaluated the patients before and after treatment. The primary outcome was the 10-meter Walking Test (10 MWT). Secondary outcomes were the modified Ashworth Scale, gait analysis, and stabilometric assessment. RESULTS: Between-group comparison showed a significant change on the 10 MWT (P = 0.008) and on stabilometric assessment [length of centre of pressure CoP (P = 0.001) and sway area (P = 0.002) eyes open and length of CoP (P = 0.021) and sway area (P = 0.008) eyes closed] after treatment. CONCLUSIONS: Greater improvement in gait and balance was noted after BTT than after FTT as an adjunct to botulinum toxin therapy in patients with chronic stroke.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.