Dendritic cells (DCs) are the most potent APCs. Whereas immature DCs downregulate T-cell responses to induce/ maintain immunologic tolerance, mature DCs promote immunity. To amplify their functions, DCs communicate with neighboring DCs through soluble mediators, cell-to-cell contact, and vesicle exchange. Transfer of nanovesicles (< 100 nm) derived from the endocytic pathway (termed exosomes) represents a novel mechanism of DC-to-DC communication. The facts that exosomes contain exosomeshuttle miRNAs and DC functions can be regulated by exogenous miRNAs, suggest that DC-to-DC interactions could be mediated through exosome-shuttle miRNAs, a hypothesis that remains to be tested. Importantly, the mechanism of transfer of exosome-shuttle miRNAs from the exosome lumen to the cytosol of target cells is unknown. Here, we demonstrate that DCs release exosomes with different miRNAs depending on the maturation of the DCs. By visualizing spontaneous transfer of exosomes between DCs, we demonstrate that exosomes fused with the target DCs, the latter followed by release of the exosome content into the DC cytosol. Importantly, exosome-shuttle miRNAs are functional, because they repress target mRNAs of acceptor DCs. IntroductionCellular miRNAs are released membrane free 1 or packaged inside microvesicles (0.1-1 m) shed by the plasma membrane 2,3 or within nanovesicles (Ͻ 100nm) derived from the endocytic pathway known as exosomes. 4,5 Exosomes are generated as intraluminal vesicles by reverse budding of the membrane of multivesicular bodies (MVBs). Release of exosomes occurs when MVBs fuse their limiting membrane with the plasma membrane. [6][7][8][9] Dendritic cells (DCs) are APCs with the ability to regulate adaptive immunity. Whereas immature DCs down-regulate T-cell responses, mature DCs promote activation, proliferation, and differentiation of effector T cells. 10 Communication between DCs is essential to amplify their tolerogenic and immunogenic functions. 11,12 This DC-to-DC interaction is mediated through cell-tocell contact, soluble mediators, exchange of plasma membrane patches, 13,14 nanotubules, 15 and interaction with apoptotic cellderived vesicles 16 and exosomes. 17,18 Although the mechanisms have not been elucidated, it has been reported that DCs acquire proteins/peptides from other cells via exosomes. [17][18][19] Recently, it has been suggested that transfer of exosome-shuttle miRNAs might constitute a mechanism of cell-tocell communication that regulates mRNA translation 20 or, alternatively, a way to dispose of "unwanted" miRNAs. 21 An important unanswered question in the field is how exosome-shuttle miRNAs, transported inside the vesicles, are delivered into the cytosol of the acceptor cells, a problem we have investigated in this study with the use of DCs. Addressing this point has been challenging because (1) the composition of DC exosomes depends on the maturation of the DC of origin 22,23 ; (2) there is limited information on intercellular communication via "endogenous" (instead of exogenously added...
Exosomes are nanovesicles released by different cell types including dendritic cells (DCs). The fact that exosomes express surface MHC-peptide complexes suggests that they could function as Ag-presenting vesicles or as vehicles to spread allogeneic Ags for priming of anti-donor T cells during elicitation of graft rejection or induction/maintenance of transplant tolerance. We demonstrate that circulating exosomes transporting alloantigens are captured by splenic DCs of different lineages. Internalization of host-derived exosomes transporting allopeptides by splenic DCs leads to activation of anti-donor CD4 T cells by the indirect pathway of allorecognition, a phenomenon that requires DC-derived, instead of exosome-derived, MHC class II molecules. By contrast, allogeneic exosomes are unable to stimulate direct-pathway T cells in vivo. We demonstrate in mice that although graft-infiltrating leukocytes release exosomes ex vivo, they do not secrete enough concentrations of exosomes into circulation to stimulate donor-reactive T cells in secondary lymphoid organs. Instead, our findings indicate that migrating DCs (generated in vitro or isolated from allografts), once they home in the spleen, they transfer exosomes expressing the reporter marker GFP to spleen-resident DCs. Our results suggest that exchange of exosomes between DCs in lymphoid organs might constitute a potential mechanism by which passenger leukocytes transfer alloantigens to recipient’s APCs and amplify generation of donor-reactive T cells following transplantation.
Tolerance induction against donor allo-antigens (allo-Ag
Type 1 diabetes (T1D) is a T cell-mediated autoimmune disease that targets the β-cells of the pancreas. We investigated the ability of soluble galectin-1 (gal-1), an endogenous lectin that promotes T cell apoptosis, to down-regulate the T cell response that destroys the pancreatic β-cells. We demonstrated that in nonobese diabetic (NOD) mice, gal-1 therapy reduces significantly the amount of Th1 cells, augments the number of T cells secreting IL-4 or IL-10 specific for islet cell Ag, and causes peripheral deletion of β-cell-reactive T cells. Administration of gal-1 prevented the onset of hyperglycemia in NOD mice at early and subclinical stages of T1D. Preventive gal-1 therapy shifted the composition of the insulitis into an infiltrate that did not invade the islets and that contained a significantly reduced number of Th1 cells and a higher percentage of CD4+ T cells with content of IL-4, IL-5, or IL-10. The beneficial effects of gal-1 correlated with the ability of the lectin to trigger apoptosis of the T cell subsets that cause β-cell damage while sparing naive T cells, Th2 lymphocytes, and regulatory T cells in NOD mice. Importantly, gal-1 reversed β-cell autoimmunity and hyperglycemia in NOD mice with ongoing T1D. Because gal-1 therapy did not cause major side effects or β-cell toxicity in NOD mice, the use of gal-1 to control β-cell autoimmunity represents a novel alternative for treatment of subclinical or ongoing T1D.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.