BackgroundArray-CGH (aCGH) is presently used into routine clinical practice for diagnosis of patients with intellectual disability (ID), multiple congenital anomalies (MCA), and autism spectrum disorder (ASD). ACGH could detect small chromosomal imbalances, copy number variations (CNVs), and closely define their size and gene content. ACGH detects pathogenic imbalances in 14–20 % of patients with ID. The aims of this study were: to establish clinical clues potentially associated with pathogenic CNVs and to identify cytogenetic indicators to predict the pathogenicity of the variants of uncertain significance (VOUS) in a large cohort of paediatric patients.MethodsWe enrolled 214 patients referred for either: ID, and/or ASD and/or MCA to genetic services at the Federico II University of Naples, Department of Translational Medicine. For each patient we collected clinical and imaging data. All the patients were tested with aCGH or as first-tier test or as part of a wider diagnostic work-up.ResultsPathologic data were detected in 65 individuals (30 %) and 46 CNVs revealed a known syndrome. The pathological CNVs were usually deletions showing the highest gene-dosage content. The positive family history for ID/ASD/MCA and ASD were good indicators for detecting pathological chromosomal rearrangements. Other clinical features as eyes anomalies, hearing loss, neurological signs, cutaneous dyscromia and endocrinological problems seem to be potential predictors of pathological CNVs. Among patients carrying VOUS we analyzed genetic features including CNVs size, presence of deletion or duplication, genic density, multiple CNVs, to clinical features. Higher gene density was found in patients affected by ID. This result suggest that higher gene content has more chances to include pathogenic gene involved and causing ID in these patients.ConclusionOur study suggest the use of aCGH as first-tier test in patients with neurdevelopmental phenotypes. The inferred results have been used for building a flow-chart to be applied for children with ID.Electronic supplementary materialThe online version of this article (doi:10.1186/s13052-016-0246-7) contains supplementary material, which is available to authorized users.
Haploinsufficiency of a region located distal to 10p14 designated HDR1, is responsible for hypoparathyroidism, sensorineural deafness, and renal anomalies (HDR syndrome). Haploinsufficiency of a more proximal region, located on 10p13-10p14, designated as DGCR2 is associated with congenital heart defects and thymus hypoplasia/aplasia or T cell defect. We describe a patient showing facial dysmorphisms, delayed psychomotor development and bilateral sensorineural hearing loss and carrying a 10p14 deletion, the smallest deletion found in the literature so far. Our patient, carrying a partial deletion of the DGCR2 region and of the HDR1 region, including the GATA3 gene, showed, unexpectedly, only few of the clinical features of DiGeorge 2 syndrome (psychomotor retardation, palpebral ptosis, epicanthic folds, anteverted nares, cryptorchidism, hand/foot abnormalities) and did not show other typical signs, such as cardiac defect, cleft palate, and abnormal T cell levels. Of the three characteristic features of the HDR syndrome, our patient had only sensorineural deafness. On the basis of the revision of the other cases reported in the literature with a deletion including the 10p14 region, we suggest that GATA3 haploinsufficiency, although not recorded for each patient, is responsible for deafness. The present case shows that even this small 10p deletion is responsible for a specific phenotype. We also underline the importance of CGH-array, in order to obtain a more precise physical mapping of the 10p deletions and an accurate genotype-phenotype correlation.
BackgroundThe chromothripsis is a biological phenomenon, first observed in tumors and then rapidly described in congenital disorders. The principle of the chromothripsis process is the occurrence of a local shattering to pieces and rebuilding of chromosomes in a random order. Congenital chromothripsis rearrangements often involve reciprocal rearrangements on multiple chromosomes and have been described as cause of contiguous gene syndromes. We hypothesize that chromothripsis could be responsible for known 9q21.13 microdeletion syndrome, causing a composite phenotype with additional features.Case presentationThe case reported is a 16- years-old female with a complex genomic rearrangement of chromosome 9 including the critical region of 9q21.13 microdeletion syndrome. The patient presents with platelet disorder and thyroid dysfunction in addition to the classical neurobehavioral phenotype of the syndrome. ConclusionsThe presence of multiple rearrangements on the same chromosome 9 and the rebuilding of chromosome in a random order suggested that the rearrangement could origin from an event of chromthripsis. To our knowledge this is the first report of congenital chromothripsis involving chromosome 9. Furthermore this is the only case of 9q21.13 microdeletion syndrome due to chromothripsis.
We identified a 14q21.2 microdeletion in a 16-year-old boy with autism spectrum disorder (ASD), IQ in the lower part of normal range but high-functioning memory skills. The deletion affects a gene desert, and the non-deleted gene closest to the microdeletion boundaries is LRFN5, which encodes a protein involved in synaptic plasticity and implicated in neuropsychiatric disorders. LRFN5 expression was significantly decreased in the proband's skin fibroblasts. The deleted region includes the pseudogene chr14.232.a, which is transcribed into a long non-coding RNA (lncLRFN5-10), whose levels were also significantly reduced in the proband's fibroblasts compared to controls. Transfection of the patient's fibroblasts with a plasmid expressing chr14.232.a significantly increased LRFN5 expression, while siRNA targeting chr14.232.a-derived lncLRFN5-10 reduced LRFN5 levels. In summary, we report on an individual with ASD carrying a microdeletion encompassing the pseudogene chr14.232.a encoding for lncLRFN5-10, which was found to affect the expression levels of the nearby, non-deleted LRFN5. This case illustrates the potential role of long non-coding RNAs in regulating expression of neighbouring genes with a functional role in ASD pathogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.