Laboratory bioassays were conducted to evaluate the effects of six vineyard pesticides on Typhlodromus pyri Scheuten (Acari: Phytoseiidae), a key predator of the mite Calepitrimerus vitis Nalepa (Acari: Eriophyoidae), in Pacific coastal vineyards. Materials tested were whey powder, 25% boscalid + 13% pyraclostrobin (Pristine), 40% myclobutanil (Rally), micronized sulfur (92% WP), 75% ethylene bisdithiocarbamate (mancozeb; Manzate), and 91.2% paraffinic oil (JMS Stylet), all applied at three concentrations. Pesticide dilutions were directly sprayed onto T. pyri adult females and juveniles, and each treatment was assessed to determine effects on direct mortality and fecundity. Five of the six pesticides tested resulted in < 50% mortality to adult and juvenile T. pyri for all concentrations 7 d after treatment. Paraffinic oil treatments displayed direct mortality > 50% for adult and juvenile assays and resulted in significantly higher mortality. Sublethal effects were more pronounced than acute pesticide toxicity, particularly in juvenile mite bioassays. Significant decreases in fecundity were detected in the sulfur and mancozeb treatments compared with the control in juvenile tests. The relative percentage of fecundity reduction for juvenile mites was highest when applying mancozeb (> 70%), sulfur (> 25%), or myclobutanil (> 20%). Adult mites displayed the greatest reductions in fecundity from applications of paraffinic oil (> 20%) or mancozeb (> 15%) treatments. Boscalid (+ pyraclostrobin) and whey displayed the least effect on fecundity across all bioassays. These results can be used to develop management guidelines in vineyard pest management practices to help conserve and enhance predatory mite populations.
The herbivore‐induced plant volatile (HIPV) methyl salicylate (MeSA) is widely present in the chemical profile of several plant species and is known to attract natural enemies, including predatory mites. In this study, the response of Typhlodromus pyri, a key predator of pest mites in west coast vineyards, to synthetically produced MeSA was tested using a Y‐tube olfactometer in laboratory bioassays. Six doses ranging from 0.002 to 200 μg of MeSA diluted in 0.1 ml hexane were tested. Significantly higher proportions of T. pyri preferred MeSA at doses 0.02, 0.2 and 20 μg. No differences in response to MeSA were detected at the highest (200 μg), intermediate (2 μg) and lowest (0.002 μg) doses. Mite response to MeSA was a function of dose when fitting polynomial and logistic regression models using dose and square of the log dose prediction factors. Results indicate that synthetic MeSA may be applied to attract predatory arthropod populations in vineyards to enhance biological control of pest mites.
We embarked on a large project designed to help enhance biological control in apple, pear and walnut orchards in the western U.S., where management programs were in the midst of a transition from older organo-phosphate insecticides to mating disruption and newer reduced-risk insecticides. A "pesticide replacement therapy" approach resulted in unstable management programs with unpredictable outbreaks of spider mites and aphids. Our project was designed to provide growers and pest managers with information on the effects of newer pesticide chemistries on a suite of representative natural enemies in both the laboratory and field, potential of new monitoring tools using herbivore-induced plant volatiles and floral volatiles, phenology of the key natural enemy species, economic consequences of using an enhanced biological control program, and value of an outreach program to get project outcomes into the hands of decision-makers. We present an overview of both the successes and failures of the project and of new projects that have spun off from this project to further enhance biological control in our systems in the near future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.