A total of 343 brain tumors were studied for IDH1 and IDH2 mutations by direct sequencing and for protein expression by immunohistochemistry with mIDH1(R132H) antibody. Of these, 287 were gliomas (17 pilocytic astrocytomas, 13 grade II and 5 grade III astrocytomas, 167 primary (pGBMs) and 19 secondary (sGBMs) glioblastomas, 36 grade II and 26 grade III oligodendrogliomas and 4 grade II-III oligoastrocytomas). In gliomas, IDH1 mutations at codon R132 were identified in 22.3%, of which 93.7% were c.395G>A (p.R132H). Mutations were more frequent in oligodendrogliomas (53.2%) than in astrocytic tumors (22.8%) and in sGBMs (84.2%) upon pGBMs (1.8%). There was a statistically significant correlation between mIDH1(R132H) antibody immunostaining and the relevant mutation c.395G>A (p.R132H) (P = 0.0001). No mutations were identified in non-glial tumors which were also negative to immunohistochemistry, with the exception of one PNET. A c.515G>T (p.R172M) mutation of the IDH2 gene was only identified in a grade II oligodendroglioma patient which was wild-type for IDH1. A direct correlation with MGMT promoter hypermethylation status and an inverse correlation with EGFR amplification was found, whereas the relationships with 1p/19q co-deletion and TP53 mutations only showed a trend toward correlation. In all gliomas, a positive correlation was found between IDH1 mutations and a young age (P = 0.0001). In contrast, a correlation with overall survival could only be obtained in low-grade gliomas. Immunohistochemistry appeared to be useful in differential diagnoses, especially toward non-tumor pathologic nervous tissue, and in recognizing infiltrating glioma cells. The mIDH1(R132H) antibody positivity was complementary with Cyclin D1 expression.
Glioblastoma (GBM) stem cells (GSCs), responsible for tumor growth, recurrence, and resistance to therapies, are considered the real therapeutic target, if they had no molecular mechanisms of resistance, in comparison with the mass of more differentiated cells which are insensitive to therapies just because of being differentiated and nonproliferating. GSCs occur in tumor niches where both stemness status and angiogenesis are conditioned by the microenvironment. In both perivascular and perinecrotic niches, hypoxia plays a fundamental role. Fifteen glioblastomas have been studied by immunohistochemistry and immunofluorescence for stemness and differentiation antigens. It has been found that circumscribed necroses develop inside hyperproliferating areas that are characterized by high expression of stemness antigens. Necrosis developed inside them because of the imbalance between the proliferation of tumor cells and endothelial cells; it reduces the number of GSCs to a thin ring around the former hyperproliferating area. The perinecrotic GSCs are nothing else that the survivors remnants of those populating hyperproliferating areas. In the tumor, GSCs coincide with malignant areas so that the need to detect where they are located is not so urgent.
Formation of neurospheres (NS) in cultures of glioblastomas (GBMs), with self-renewal, clonogenic capacities, and tumorigenicity following transplantation into immunodeficient mice, may denounce the existence of brain tumor stem cells (BTSCs) in vivo. In sixteen cell lines from resected primary glioblastomas, NS showed the same genetic alterations as primary tumors and the expression of stemness antigens. Adherent cells (AC), after adding 10% of fetal bovine serum (FBS) to the culture, were genetically different from NS and prevailingly expressed differentiation antigens. NS developed from a highly malignant tumor phenotype with proliferation, circumscribed necrosis, and high vessel density. Beside originating from transformed neural stem cells (NSCs), BTSCs may be contained within or correspond to dedifferentiated cells after mutation accumulation, which reacquire the expression of stemness antigens.
MGMT (O⁶-methylguanine-DNA methyltransferase) promoter hypermethylation is a helpful prognostic marker for chemotherapy of gliomas, although with some controversy for low-grade tumors. The objective of this study was to retrospectively investigate MGMT promoter hypermethylation status for a series of 350 human brain tumors, including 275 gliomas of different malignancy grade, 21 glioblastoma multiforme (GBM) cell lines, and 75 non-glial tumors. The analysis was performed by methylation-specific PCR and capillary electrophoresis. MGMT expression at the protein level was also evaluated by both immunohistochemistry (IHC) and western blotting analysis. Associations of MGMT hypermethylation with IDH1/IDH2 mutations, EGFR amplification, TP53 mutations, and 1p/19q co-deletion, and the prognostic significance of these, were investigated for the gliomas. MGMT promoter hypermethylation was identified in 37.8% of gliomas, but was not present in non-glial tumors, with the exception of one primitive neuroectodermal tumor (PNET). The frequency was similar for all the astrocytic gliomas, with no correlation with histological grade. Significantly higher values were obtained for oligodendrogliomas. MGMT promoter hypermethylation was significantly associated with IDH1/IDH2 mutations (P = 0.0207) in grade II–III tumors, whereas it had a borderline association with 1p deletion (P = 0.0538) in oligodendrogliomas. No other association was found. Significant correlation of MGMT hypermethylation with MGMT protein expression was identified by IHC in GBMs and oligodendrogliomas (P = 0.0001), but not by western blotting. A positive correlation between MGMT protein expression, as detected by either IHC or western blotting, was also observed. The latter was consistent with MGMT promoter hypermethylation status in GBM cell lines. In low-grade gliomas, MGMT hypermethylation, but not MGMT protein expression, was associated with a trend, only, toward better survival, in contrast with GBMs, for which it had favorable prognostic significance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.