Postsynthetic metal ion exchange in a benzotriazolate-based MFU-4l(arge) framework leads to a Co(II)-containing framework with open metal sites showing reversible gas-phase oxidation properties.
Crystal structures of two metal-organic frameworks (MFU-1 and MFU-2) are presented, both of which contain redox-active Co(II) centres coordinated by linear 1,4-bis[(3,5-dimethyl)pyrazol-4-yl] ligands. In contrast to many MOFs reported previously, these compounds show excellent stability against hydrolytic decomposition. Catalytic turnover is achieved in oxidation reactions by employing tert-butyl hydroperoxide and the solid catalysts are easily recovered from the reaction mixture. Whereas heterogeneous catalysis is unambiguously demonstrated for MFU-1, MFU-2 shows catalytic activity due to slow metal leaching, emphasising the need for a deeper understanding of structure-reactivity relationships in the future design of redox-active metal-organic frameworks. Mechanistic details for oxidation reactions employing tert-butyl hydroperoxide are studied by UV/Vis and IR spectroscopy and XRPD measurements. The catalytic process accompanying changes of redox states and structural changes were investigated by means of cobalt K-edge X-ray absorption spectroscopy. To probe the putative binding modes of molecular oxygen, the isosteric heats of adsorption of O(2) were determined and compared with models from DFT calculations. The stabilities of the frameworks in an oxygen atmosphere as a reactive gas were examined by temperature-programmed oxidation (TPO). Solution impregnation of MFU-1 with a co-catalyst (N-hydroxyphthalimide) led to NHPI@MFU-1, which oxidised a range of organic substrates under ambient conditions by employing molecular oxygen from air. The catalytic reaction involved a biomimetic reaction cascade based on free radicals. The concept of an entatic state of the cobalt centres is proposed and its relevance for sustained catalytic activity is briefly discussed.
The new inorganic-organic hybrid compound (dienH2)Cu2Sn2S6 (dien = diethylenetriamine) was synthesized under solvothermal conditions. It crystallizes in the tetragonal space group I4m2 with a = 7.8793(3) A, c = 24.9955(15) A, and V = 1551.80(13) A(3). The structure consists of anionic [Cu2Sn2S6](2-) layers extending in the (001) plane and protonated amine molecules as charge compensating ions sandwiched between the layers. The layered [Cu2Sn2S6](2-) anion is composed of a single layer of edge-sharing CuS4 tetrahedra which is joined above and below to straight chains constructed by corner-sharing SnS4 tetrahedra. The material is a semiconductor with an optical band gap of 1.51 eV. More interestingly, preliminary results demonstrate that the compound exhibits photoconductive properties with an increase of the conductivity by a factor of 3 when irradiated with UV light. Upon heating in an inert atmosphere the compound starts to decompose at about 256 degrees C.
The two new thiostannate compounds (trenH) 2 Sn 3 S 7 (1) and {[Mn(tren)] 2 Sn 2 S 6 } (2) (tren = tris-2-aminoethylamine) were obtained under solvothermal conditions. Compound 1 crystallizes in the hexagonal space group P6 3 /mmc with a = 13.2642(19), c = 19.078(3) Å, V = 2906.9(7) Å 3 . The layered [Sn 3 S 7 ] 2− anion is constructed by Sn 3 S 4 semi-cubes sharing common edges. The layers are characterized by large hexagonal pores with dimensions of about 11 × 11 Å 2 . Compound 2 crystallizes in the triclinic space group P1 with lattice parameters a = 7.6485(7), b = 8.1062 (7), c = 12.1805(11) Å, α = 97.367(11), β = 103.995(11), γ = 108.762(10) • , V = 676.17(10) Å 3 . The [Sn 2 S 6 ] 4− anion is composed of two edge-sharing SnS 4 tetrahedra and joins two Mn 2+ -centered complexes by Mn-S bond formation. The Mn 2+ cation is in a trigonal-bipyramidal environment of four N atoms of the tren ligand and one S atom of the thiostannate anion. Both compounds are semiconductors with a band gap of 2.96 eV for 1 and of 2.75 eV for 2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.