The excited-state relaxation of malachite green and brilliant green in solvents of various viscosity has been investigated at liquid/liquid interfaces and in bulk solutions by surface second harmonic generation and transient absorption spectroscopy. Mixtures of water and glycerol in various proportions have been used as solvents of variable viscosity. Transient absorption measurements in bulk revealed that both dyes are suitable as a probe of local viscosity for water+glycerol mixtures and that two of three processes following the optical excitation exhibit the same power dependence on solvent viscosity. This observation leads to assignment of the processes to a twist and twist-back of the aromatic rings attached to the central carbon atom of the dye. Therefore, identification of the intermediate state observed in the radiationless deactivation pathway with the twisted form of the dye has been supported. The time profiles of the second harmonic signal recorded at water+glycerol/ dodecane interfaces have been found to be monoexponential at low dye concentrations (below 10 -5 M) and biexponential at higher concentrations, and therefore the origin of the slower component has been attributed to the relaxation of dye aggregates adsorbed at the interface. The decay times measured at interfaces increased with increasing amount of glycerol in the mixture, but the rise was slower than in bulk solution. Therefore, the viscosity at the interfacial region, higher than that of the bulk solution, is mainly determined by structural modification of the solvent resulting from interactions between the two liquids that constitute the interface and addition of glycerol affects viscosity, only to a lesser extent. We have also shown that if the viscosity of the upper layer is much higher (at least 1 order of magnitude) than that of water or short alkanes, a slowdown of the relaxation is observed. This contradicts earlier findings and means that large amplitude motion of all three rings is involved in the deactivation of the excited molecule, but the rotation of the phenyl ring, which is smaller than the alkyl-substituted aniline groups, becomes a bottleneck for the relaxation in very viscous environments.
The ultrafast excited-state dynamics of Malachite Green (MG) in bulk aqueous solutions and at air/water interfaces, in particular the effect of the presence of various sodium salts in the aqueous phase, has been investigated by transient absorption and surface second harmonic generation. In bulk solutions, a slowing down of the ground-state recovery that can be unambiguously ascribed to the formation of aggregates of various sizes is observed at high (>0.3 M) salt concentrations only, with the exception of NaSCN where an effect is already found at 0.05 M. At the interface, small amounts of salt result in two effects: 1) an increase of the stationary surface second harmonic signal and 2) a slowing down of the ground-state recovery of MG. These phenomena are explained by the formation of aggregates due to an increase of the interfacial MG concentration upon addition of salt. The dependencies of both effects on salt concentration are correlated and vary with the anion as SCNThis order is almost the opposite as that in the Hofmeister series for the salting-out strength.
The present study reports on the effect caused by sodium salts added to a solution of malachite green in a liquid/liquid interfacial system probed by the time-resolved surface second harmonic generation (TRSSHG) technique. This effect is known as "salting-out effect" and is shown to reveal two main issues: salts added to the bulk, first, cause a reduction of the dye solubility and, second, stimulate the adsorption of malachite green cations at the interface, changing the equilibrium constant between the dye molecules adsorbed at the interface and those being dissolved in the bulk. The increased adsorption at the interface is observed in the TRSSHG experiment as a relative increase of the aggregates' contribution to the measured time profile. However, depending on the nature and properties of salt anions, the mechanisms responsible for enhancing the population of interfacial aggregates can differ. This study explains such mechanisms for NaCl and NaSCN: addition of NaCl leads to an increase of the malachite green adsorption at the interface followed by the formation of aggregates, whereas the addition of NaSCN leads rather to the formation of aggregates already in the bulk with their further migration toward the interface. A simple quantitative description of the salting-out effect based on a modified Frumkin-Fowler-Guggenheim model also has been proposed. It has been shown to give a good agreement with the experiment with NaCl, i.e., when the formation of dye aggregates in the bulk solution can be neglected
A new four-wave-mixing technique with evanescent optical fields generated by total internal reflection at a liquid-liquid interface is described. Several applications of this method to measure thermoacoustic and dynamic properties near liquid-liquid interfaces are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.