Experiencing some early life adversity can have an “inoculating” effect that promotes resilience in adulthood. However, the mechanisms underlying stress inoculation are unknown, and animal models are lacking. Here we used the limited bedding and nesting (LBN) model of adversity to evaluate stress inoculation of addiction-related phenotypes. In LBN, pups from postnatal days 2 to 9 and their dams were exposed to a low-resource environment. In adulthood, they were tested for addiction-like phenotypes and compared to rats raised in standard housing conditions. High levels of impulsivity are associated with substance abuse, but in males, LBN reduced impulsive choice compared to controls. LBN males also self-administered less morphine and had a lower breakpoint on a progressive ratio reinforcement schedule than controls. These effects of LBN on addiction-related behaviors were not found in females. Because the nucleus accumbens (NAc) mediates these behaviors, we tested whether LBN altered NAc physiology in drug-naïve and morphine-exposed rats. LBN reduced the frequency of spontaneous excitatory postsynaptic currents in males, but a similar effect was not observed in females. Only in males did LBN prevent a morphine-induced increase in the AMPA/NMDA ratio. RNA sequencing was performed to delineate the molecular signature in the NAc associated with LBN-derived phenotypes. LBN produced sex-specific changes in transcription, including in genes related to glutamate transmission. Collectively, these studies reveal that LBN causes a male-specific stress inoculation effect against addiction-related phenotypes. Identifying factors that promote resilience to addiction may reveal novel treatment options for patients.
Rationale: Parental drug use around or before conception can have adverse consequences for offspring. Historically, this research has focused on the effects of maternal substance use on future generations but less is known about the influence of the paternal lineage. This study focused on the impact of chronic paternal morphine exposure prior to conception on behavioral outcomes in male and female progeny. Objectives: This study sought to investigate the impact of paternal morphine self-administration on anxiety-like behavior, the stress response, and memory in male and female offspring. Methods: Adult, drug-naïve male and female progeny of morphine-treated sires and controls were evaluated for anxiety-like behavior using defensive probe burying and novelty-induced hypophagia paradigms. Hypothalamic-pituitary-adrenal (HPA) axis function was assessed by measuring plasma corticosterone levels following a restraint stressor in male and female progeny. Memory was probed using a battery of tests including object location memory, novel object recognition and contextual fear conditioning. Results: Paternal morphine exposure did not alter anxiety-like behavior or stress-induced HPA axis activation in male or female offspring. Morphine-sired male and female offspring showed intact hippocampus-dependent memory: they performed normally on the long-term fear conditioning and object location memory tests. In contrast, paternal morphine exposure selectively disrupted novel object recognition in female, but not male progeny. Conclusions: Our findings demonstrate that paternal morphine taking produces sex-specific and selective impairments in object recognition memory while leaving hippocampal function largely intact.
Parental history of opioid exposure is seldom considered when prescribing opioids for pain relief. To explore whether parental opioid exposure may affect sensitivity to morphine in offspring, we developed a “rat pain scale” with high-speed imaging, machine learning, and mathematical modeling in a multigenerational model of paternal morphine self-administration. We find that the most commonly used tool to measure mechanical sensitivity in rodents, the von Frey hair, is not painful in rats during baseline conditions. We also find that male progeny of morphine-treated sires had no baseline changes in mechanical pain sensitivity but were more sensitive to the pain-relieving effects of morphine. Using RNA sequencing across pain-relevant brain regions, we identify gene expression changes within the regulator of G protein signaling family of proteins that may underlie this multigenerational phenotype. Together, this rat pain scale revealed that paternal opioid exposure increases sensitivity to morphine’s pain-relieving effects in male offspring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.