Atomically thin molybdenum disulfide (MoS2) offers potential for advanced devices and an alternative to graphene due to its unique electronic and optical properties. The temperature-dependent Raman spectra of exfoliated, monolayer MoS2 in the range of 100–320 K are reported and analyzed. The linear temperature coefficients of the in-plane E
2g
1 and the out-of-plane A
1g
modes for both suspended and substrate-supported monolayer MoS2 are measured. These data, when combined with the first-order coefficients from laser power-dependent studies, enable the thermal conductivity to be extracted. The resulting thermal conductivity κ = (34.5 ± 4) W/mK at room temperature agrees well with the first-principles lattice dynamics simulations. However, this value is significantly lower than that of graphene. The results from this work provide important input for the design of MoS2-based devices where thermal management is critical.
We present the results of a thorough study of wet chemical methods for transferring chemical vapor deposition grown graphene from the metal growth substrate to a device-compatible substrate. On the basis of these results, we have developed a "modified RCA clean" transfer method that has much better control of both contamination and crack formation and does not degrade the quality of the transferred graphene. Using this transfer method, high device yields, up to 97%, with a narrow device performance metrics distribution were achieved. This demonstration addresses an important step toward large-scale graphene-based electronic device applications.
Aqueous two-phase extraction is demonstrated to enable isolation of single semiconducting and metallic single-wall carbon nanotube species from a synthetic mixture. The separation is rapid and robust, with remarkable tunability via modification of the surfactant environment set for the separation.
An imaging platform based on broadband coherent anti-Stokes Raman scattering (BCARS) has been developed which provides an advantageous combination of speed, sensitivity and spectral breadth. The system utilizes a configuration of laser sources that probes the entire biologically-relevant Raman window (500 cm−1 to 3500 cm−1) with high resolution (< 10 cm−1). It strongly and efficiently stimulates Raman transitions within the typically weak “fingerprint” region using intrapulse 3-colour excitation, and utilizes the nonresonant background (NRB) to heterodyne amplify weak Raman signals. We demonstrate high-speed chemical imaging in two- and three-dimensional views of healthy murine liver and pancreas tissues and interfaces between xenograft brain tumours and the surrounding healthy brain matter.
In this contribution we demonstrate the effective separation of single-wall carbon nanotube (SWCNT) species with diameters larger than 1 nm through multistage aqueous two-phase extraction (ATPE), including isolation at the near-monochiral species level up to at least the diameter range of SWCNTs synthesized by electric arc synthesis (1.3-1.6 nm). We also demonstrate that refined species are readily obtained from both the metallic and semiconducting subpopulations of SWCNTs and that this methodology is effective for multiple SWCNT raw materials. Using these data, we report an empirical function for the necessary surfactant concentrations in the ATPE method for separating different SWCNTs into either the lower or upper phase as a function of SWCNT diameter. This empirical correlation enables predictive separation design and identifies a subset of SWCNTs that behave unusually as compared to other species. These results not only dramatically increase the range of SWCNT diameters to which species selective separation can be achieved but also demonstrate that aqueous two-phase separations can be designed across experimentally accessible ranges of surfactant concentrations to controllably separate SWCNT populations of very small (∼0.62 nm) to very large diameters (>1.7 nm). Together, the results reported here indicate that total separation of all SWCNT species is likely feasible by the ATPE method, especially given future development of multistage automated extraction techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.